OTG: Implement hidden activity usb detection technique

This commit is contained in:
Nikita Mikhailov
2016-04-07 01:22:24 +06:00
parent 5e18b15775
commit 3798249570
8 changed files with 109 additions and 934 deletions

View File

@@ -877,6 +877,24 @@
android:configChanges="orientation|screenSize|keyboardHidden|keyboard"
android:label="@string/title_import_keys" />
<!-- Usb interceptor activity -->
<activity
android:name=".ui.UsbEventReceiverActivity"
android:label="@string/app_name"
android:theme="@style/Theme.Keychain.Transparent"
android:noHistory="true"
android:excludeFromRecents="true"
android:taskAffinity="com.example.taskAffinityUsbEventReceiver"
android:process=":UsbEventReceiverActivityProcess"
android:exported="false">
<meta-data android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
android:resource="@xml/usb_device_filter" />
<intent-filter>
<action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
</intent-filter>
</activity>
<!-- DEPRECATED service,
using this service may lead to truncated data being returned to the caller -->
<service

View File

@@ -1,712 +0,0 @@
package org.sufficientlysecure.keychain.javacard;
import org.bouncycastle.bcpg.HashAlgorithmTags;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
import org.sufficientlysecure.keychain.util.Iso7816TLV;
import org.sufficientlysecure.keychain.util.Log;
import org.sufficientlysecure.keychain.util.Passphrase;
import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.security.interfaces.RSAPrivateCrtKey;
import nordpol.Apdu;
public class BaseJavacardDevice implements JavacardDevice {
// Fidesmo constants
private static final String FIDESMO_APPS_AID_PREFIX = "A000000617";
private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
private Transport mTransport;
private Passphrase mPin;
private Passphrase mAdminPin;
private boolean mPw1ValidForMultipleSignatures;
private boolean mPw1ValidatedForSignature;
private boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
private boolean mPw3Validated;
private boolean mTagHandlingEnabled;
public BaseJavacardDevice() {
}
private static String getHex(byte[] raw) {
return new String(Hex.encode(raw));
}
public Passphrase getPin() {
return mPin;
}
public void setPin(final Passphrase pin) {
this.mPin = pin;
}
public Passphrase getAdminPin() {
return mAdminPin;
}
public void setAdminPin(final Passphrase adminPin) {
this.mAdminPin = adminPin;
}
public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException {
long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
KeyType keyType = KeyType.from(secretKey);
if (keyType == null) {
throw new IOException("Inappropriate key flags for smart card key.");
}
// Slot is empty, or contains this key already. PUT KEY operation is safe
boolean canPutKey = !containsKey(keyType)
|| keyMatchesFingerPrint(keyType, secretKey.getFingerprint());
if (!canPutKey) {
throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
keyType.toString()));
}
putKey(keyType.getmSlot(), secretKey, passphrase);
putData(keyType.getmFingerprintObjectId(), secretKey.getFingerprint());
putData(keyType.getTimestampObjectId(), timestampBytes);
}
public boolean containsKey(KeyType keyType) throws IOException {
return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
}
public boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
return java.util.Arrays.equals(getMasterKeyFingerprint(keyType.getIdx()), fingerprint);
}
// METHOD UPDATED OK
public void connectToDevice() throws IOException {
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
// See specification, page 51
String accepted = "9000";
// Command APDU (page 51) for SELECT FILE command (page 29)
String opening =
"00" // CLA
+ "A4" // INS
+ "04" // P1
+ "00" // P2
+ "06" // Lc (number of bytes)
+ "D27600012401" // Data (6 bytes)
+ "00"; // Le
String response = nfcCommunicate(opening); // activate connection
if (!response.endsWith(accepted)) {
throw new CardException("Initialization failed!", parseCardStatus(response));
}
byte[] pwStatusBytes = nfcGetPwStatusBytes();
mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
mPw1ValidatedForSignature = false;
mPw1ValidatedForDecrypt = false;
mPw3Validated = false;
}
/**
* Parses out the status word from a JavaCard response string.
*
* @param response A hex string with the response from the card
* @return A short indicating the SW1/SW2, or 0 if a status could not be determined.
*/
short parseCardStatus(String response) {
if (response.length() < 4) {
return 0; // invalid input
}
try {
return Short.parseShort(response.substring(response.length() - 4), 16);
} catch (NumberFormatException e) {
return 0;
}
}
/**
* Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
* conformance to the token's requirements for key length.
*
* @param pw For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
* @param newPin The new PW1 or PW3.
*/
// METHOD UPDATED[OK]
public void modifyPin(int pw, byte[] newPin) throws IOException {
final int MAX_PW1_LENGTH_INDEX = 1;
final int MAX_PW3_LENGTH_INDEX = 3;
byte[] pwStatusBytes = nfcGetPwStatusBytes();
if (pw == 0x81) {
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
} else if (pw == 0x83) {
if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
} else {
throw new IOException("Invalid PW index for modify PIN operation");
}
byte[] pin;
if (pw == 0x83) {
pin = mAdminPin.toStringUnsafe().getBytes();
} else {
pin = mPin.toStringUnsafe().getBytes();
}
// Command APDU for CHANGE REFERENCE DATA command (page 32)
String changeReferenceDataApdu = "00" // CLA
+ "24" // INS
+ "00" // P1
+ String.format("%02x", pw) // P2
+ String.format("%02x", pin.length + newPin.length) // Lc
+ getHex(pin)
+ getHex(newPin);
String response = nfcCommunicate(changeReferenceDataApdu); // change PIN
if (!response.equals("9000")) {
throw new CardException("Failed to change PIN", parseCardStatus(response));
}
}
/**
* Call DECIPHER command
*
* @param encryptedSessionKey the encoded session key
* @return the decoded session key
*/
// METHOD UPDATED [OK]
public byte[] decryptSessionKey(byte[] encryptedSessionKey) throws IOException {
if (!mPw1ValidatedForDecrypt) {
nfcVerifyPin(0x82); // (Verify PW1 with mode 82 for decryption)
}
String firstApdu = "102a8086fe";
String secondApdu = "002a808603";
String le = "00";
byte[] one = new byte[254];
// leave out first byte:
System.arraycopy(encryptedSessionKey, 1, one, 0, one.length);
byte[] two = new byte[encryptedSessionKey.length - 1 - one.length];
for (int i = 0; i < two.length; i++) {
two[i] = encryptedSessionKey[i + one.length + 1];
}
nfcCommunicate(firstApdu + getHex(one));
String second = nfcCommunicate(secondApdu + getHex(two) + le);
String decryptedSessionKey = getDataField(second);
return Hex.decode(decryptedSessionKey);
}
/**
* Verifies the user's PW1 or PW3 with the appropriate mode.
*
* @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
* For PW3 (Admin PIN), mode is 0x83.
*/
// METHOD UPDATED [OK]
public void nfcVerifyPin(int mode) throws IOException {
if (mPin != null || mode == 0x83) {
byte[] pin;
if (mode == 0x83) {
pin = mAdminPin.toStringUnsafe().getBytes();
} else {
pin = mPin.toStringUnsafe().getBytes();
}
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
// See specification, page 51
String accepted = "9000";
String response = nfcTryPin(mode, pin); // login
if (!response.equals(accepted)) {
throw new CardException("Bad PIN!", parseCardStatus(response));
}
if (mode == 0x81) {
mPw1ValidatedForSignature = true;
} else if (mode == 0x82) {
mPw1ValidatedForDecrypt = true;
} else if (mode == 0x83) {
mPw3Validated = true;
}
}
}
/**
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
* (0x7F21) can exceed this length.
*
* @param dataObject The data object to be stored.
* @param data The data to store in the object
*/
// METHOD UPDATED [OK]
public void putData(int dataObject, byte[] data) throws IOException {
if (data.length > 254) {
throw new IOException("Cannot PUT DATA with length > 254");
}
if (dataObject == 0x0101 || dataObject == 0x0103) {
if (!mPw1ValidatedForDecrypt) {
nfcVerifyPin(0x82); // (Verify PW1 for non-signing operations)
}
} else if (!mPw3Validated) {
nfcVerifyPin(0x83); // (Verify PW3)
}
String putDataApdu = "00" // CLA
+ "DA" // INS
+ String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
+ String.format("%02x", dataObject & 0xFF) // P2
+ String.format("%02x", data.length) // Lc
+ getHex(data);
String response = nfcCommunicate(putDataApdu); // put data
if (!response.equals("9000")) {
throw new CardException("Failed to put data.", parseCardStatus(response));
}
}
/**
* Puts a key on the token in the given slot.
*
* @param slot The slot on the token where the key should be stored:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
*/
// METHOD UPDATED [OK]
public void putKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
throws IOException {
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
throw new IOException("Invalid key slot");
}
RSAPrivateCrtKey crtSecretKey;
try {
secretKey.unlock(passphrase);
crtSecretKey = secretKey.getCrtSecretKey();
} catch (PgpGeneralException e) {
throw new IOException(e.getMessage());
}
// Shouldn't happen; the UI should block the user from getting an incompatible key this far.
if (crtSecretKey.getModulus().bitLength() > 2048) {
throw new IOException("Key too large to export to Security Token.");
}
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
throw new IOException("Invalid public exponent for smart Security Token.");
}
if (!mPw3Validated) {
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
}
byte[] header = Hex.decode(
"4D82" + "03A2" // Extended header list 4D82, length of 930 bytes. (page 23)
+ String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
+ "7F48" + "15" // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
+ "9103" // Public modulus, length 3
+ "928180" // Prime P, length 128
+ "938180" // Prime Q, length 128
+ "948180" // Coefficient (1/q mod p), length 128
+ "958180" // Prime exponent P (d mod (p - 1)), length 128
+ "968180" // Prime exponent Q (d mod (1 - 1)), length 128
+ "97820100" // Modulus, length 256, last item in private key template
+ "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
byte[] dataToSend = new byte[934];
byte[] currentKeyObject;
int offset = 0;
System.arraycopy(header, 0, dataToSend, offset, header.length);
offset += header.length;
currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
offset += 3;
// NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
// in the array to represent sign, so we take care to set the offset to 1 if necessary.
currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getModulus().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);
String putKeyCommand = "10DB3FFF";
String lastPutKeyCommand = "00DB3FFF";
// Now we're ready to communicate with the token.
offset = 0;
String response;
while (offset < dataToSend.length) {
int dataRemaining = dataToSend.length - offset;
if (dataRemaining > 254) {
response = nfcCommunicate(
putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
);
offset += 254;
} else {
int length = dataToSend.length - offset;
response = nfcCommunicate(
lastPutKeyCommand + String.format("%02x", length)
+ Hex.toHexString(dataToSend, offset, length));
offset += length;
}
if (!response.endsWith("9000")) {
throw new CardException("Key export to Security Token failed", parseCardStatus(response));
}
}
// Clear array with secret data before we return.
Arrays.fill(dataToSend, (byte) 0);
}
/**
* Return fingerprints of all keys from application specific data stored
* on tag, or null if data not available.
*
* @return The fingerprints of all subkeys in a contiguous byte array.
*/
// METHOD UPDATED [OK]
public byte[] getFingerprints() throws IOException {
String data = "00CA006E00";
byte[] buf = mTransport.sendAndReceive(Hex.decode(data));
Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
Log.d(Constants.TAG, "nfcGetFingerprints() Iso7816TLV tlv data:\n" + tlv.prettyPrint());
Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
if (fptlv == null) {
return null;
}
return fptlv.mV;
}
/**
* Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
*
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
*/
// METHOD UPDATED [OK]
public byte[] nfcGetPwStatusBytes() throws IOException {
String data = "00CA00C400";
return mTransport.sendAndReceive(Hex.decode(data));
}
// METHOD UPDATED [OK]
public byte[] getAid() throws IOException {
String info = "00CA004F00";
return mTransport.sendAndReceive(Hex.decode(info));
}
// METHOD UPDATED [OK]
public String getUserId() throws IOException {
String info = "00CA006500";
return nfcGetHolderName(nfcCommunicate(info));
}
/**
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
// METHOD UPDATED [OK]
public byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException {
if (!mPw1ValidatedForSignature) {
nfcVerifyPin(0x81); // (Verify PW1 with mode 81 for signing)
}
// dsi, including Lc
String dsi;
Log.i(Constants.TAG, "Hash: " + hashAlgo);
switch (hashAlgo) {
case HashAlgorithmTags.SHA1:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
}
dsi = "23" // Lc
+ "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
+ "0605" + "2B0E03021A" // OID of SHA1
+ "0500" // TLV coding of ZERO
+ "0414" + getHex(hash); // 0x14 are 20 hash bytes
break;
case HashAlgorithmTags.RIPEMD160:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
}
dsi = "233021300906052B2403020105000414" + getHex(hash);
break;
case HashAlgorithmTags.SHA224:
if (hash.length != 28) {
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
}
dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
break;
case HashAlgorithmTags.SHA256:
if (hash.length != 32) {
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
}
dsi = "333031300D060960864801650304020105000420" + getHex(hash);
break;
case HashAlgorithmTags.SHA384:
if (hash.length != 48) {
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
}
dsi = "433041300D060960864801650304020205000430" + getHex(hash);
break;
case HashAlgorithmTags.SHA512:
if (hash.length != 64) {
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
}
dsi = "533051300D060960864801650304020305000440" + getHex(hash);
break;
default:
throw new IOException("Not supported hash algo!");
}
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
String apdu =
"002A9E9A" // CLA, INS, P1, P2
+ dsi // digital signature input
+ "00"; // Le
String response = nfcCommunicate(apdu);
if (response.length() < 4) {
throw new CardException("Bad response", (short) 0);
}
// split up response into signature and status
String status = response.substring(response.length() - 4);
String signature = response.substring(0, response.length() - 4);
// while we are getting 0x61 status codes, retrieve more data
while (status.substring(0, 2).equals("61")) {
Log.d(Constants.TAG, "requesting more data, status " + status);
// Send GET RESPONSE command
response = nfcCommunicate("00C00000" + status.substring(2));
status = response.substring(response.length() - 4);
signature += response.substring(0, response.length() - 4);
}
Log.d(Constants.TAG, "final response:" + status);
if (!mPw1ValidForMultipleSignatures) {
mPw1ValidatedForSignature = false;
}
if (!"9000".equals(status)) {
throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
}
// Make sure the signature we received is actually the expected number of bytes long!
if (signature.length() != 256 && signature.length() != 512) {
throw new IOException("Bad signature length! Expected 128 or 256 bytes, got " + signature.length() / 2);
}
return Hex.decode(signature);
}
public String nfcGetHolderName(String name) {
String slength;
int ilength;
name = name.substring(6);
slength = name.substring(0, 2);
ilength = Integer.parseInt(slength, 16) * 2;
name = name.substring(2, ilength + 2);
name = (new String(Hex.decode(name))).replace('<', ' ');
return (name);
}
private String nfcGetDataField(String output) {
return output.substring(0, output.length() - 4);
}
/**
* Transceive data via NFC encoded as Hex
*/
// METHOD UPDATED [OK]
public String nfcCommunicate(String apdu) throws IOException, TransportIoException {
return getHex(mTransport.sendAndReceive(Hex.decode(apdu)));
}
public boolean isConnected() {
return mTransport.isConnected();
}
// NEW METHOD [OK]
public boolean isFidesmoToken() {
if (isConnected()) { // Check if we can still talk to the card
try {
// By trying to select any apps that have the Fidesmo AID prefix we can
// see if it is a Fidesmo device or not
byte[] mSelectResponse = mTransport.sendAndReceive(Apdu.select(FIDESMO_APPS_AID_PREFIX));
// Compare the status returned by our select with the OK status code
return Apdu.hasStatus(mSelectResponse, Apdu.OK_APDU);
} catch (IOException e) {
Log.e(Constants.TAG, "Card communication failed!", e);
}
}
return false;
}
/**
* Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
* this command also has the effect of resetting the digital signature counter.
* NOTE: This does not set the key fingerprint data object! After calling this command, you
* must construct a public key packet using the returned public key data objects, compute the
* key fingerprint, and store it on the card using: putData(0xC8, key.getFingerprint())
*
* @param slot The slot on the card where the key should be generated:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
* @return the public key data objects, in TLV format. For RSA this will be the public modulus
* (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
*/
// NEW METHOD [OK]
public byte[] nfcGenerateKey(int slot) throws IOException {
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
throw new IOException("Invalid key slot");
}
if (!mPw3Validated) {
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
}
String generateKeyApdu = "0047800002" + String.format("%02x", slot) + "0000";
String getResponseApdu = "00C00000";
String first = nfcCommunicate(generateKeyApdu);
String second = nfcCommunicate(getResponseApdu);
if (!second.endsWith("9000")) {
throw new IOException("On-card key generation failed");
}
String publicKeyData = getDataField(first) + getDataField(second);
Log.d(Constants.TAG, "Public Key Data Objects: " + publicKeyData);
return Hex.decode(publicKeyData);
}
// NEW METHOD [OK][OK]
private String getDataField(String output) {
return output.substring(0, output.length() - 4);
}
// NEW METHOD [OK]
private String nfcTryPin(int mode, byte[] pin) throws IOException {
// Command APDU for VERIFY command (page 32)
String login =
"00" // CLA
+ "20" // INS
+ "00" // P1
+ String.format("%02x", mode) // P2
+ String.format("%02x", pin.length) // Lc
+ Hex.toHexString(pin);
return nfcCommunicate(login);
}
/**
* Resets security token, which deletes all keys and data objects.
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
* Afterwards, the token is reactivated.
*/
// NEW METHOD [OK]
public void resetAndWipeToken() throws IOException {
String accepted = "9000";
// try wrong PIN 4 times until counter goes to C0
byte[] pin = "XXXXXX".getBytes();
for (int i = 0; i <= 4; i++) {
String response = nfcTryPin(0x81, pin);
if (response.equals(accepted)) { // Should NOT accept!
throw new CardException("Should never happen, XXXXXX has been accepted!", parseCardStatus(response));
}
}
// try wrong Admin PIN 4 times until counter goes to C0
byte[] adminPin = "XXXXXXXX".getBytes();
for (int i = 0; i <= 4; i++) {
String response = nfcTryPin(0x83, adminPin);
if (response.equals(accepted)) { // Should NOT accept!
throw new CardException("Should never happen, XXXXXXXX has been accepted", parseCardStatus(response));
}
}
// reactivate token!
String reactivate1 = "00" + "e6" + "00" + "00";
String reactivate2 = "00" + "44" + "00" + "00";
String response1 = nfcCommunicate(reactivate1);
String response2 = nfcCommunicate(reactivate2);
if (!response1.equals(accepted) || !response2.equals(accepted)) {
throw new CardException("Reactivating failed!", parseCardStatus(response1));
}
}
/**
* Return the fingerprint from application specific data stored on tag, or
* null if it doesn't exist.
*
* @param idx Index of the key to return the fingerprint from.
* @return The fingerprint of the requested key, or null if not found.
*/
public byte[] getMasterKeyFingerprint(int idx) throws IOException {
byte[] data = getFingerprints();
if (data == null) {
return null;
}
// return the master key fingerprint
ByteBuffer fpbuf = ByteBuffer.wrap(data);
byte[] fp = new byte[20];
fpbuf.position(idx * 20);
fpbuf.get(fp, 0, 20);
return fp;
}
@Override
public void setTransport(Transport mTransport) {
this.mTransport = mTransport;
}
}

View File

@@ -1,105 +0,0 @@
package org.sufficientlysecure.keychain.javacard;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.util.Passphrase;
import java.io.IOException;
public interface JavacardDevice {
Passphrase getPin();
void setPin(final Passphrase pin);
Passphrase getAdminPin();
void setAdminPin(final Passphrase adminPin);
void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException;
boolean containsKey(KeyType keyType) throws IOException;
boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException;
void connectToDevice() throws IOException;
/**
* Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
* conformance to the card's requirements for key length.
*
* @param pinType For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
* @param newPin The new PW1 or PW3.
*/
void modifyPin(int pinType, byte[] newPin) throws IOException;
/**
* Calls to calculate the signature and returns the MPI value
*
* @param encryptedSessionKey the encoded session key
* @return the decoded session key
*/
byte[] decryptSessionKey(byte[] encryptedSessionKey) throws IOException;
/**
* Return fingerprints of all keys from application specific data stored
* on tag, or null if data not available.
*
* @return The fingerprints of all subkeys in a contiguous byte array.
*/
byte[] getFingerprints() throws IOException;
byte[] getAid() throws IOException;
String getUserId() throws IOException;
boolean isConnected();
/**
* Calls to calculate the signature and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException;
boolean isFidesmoToken();
/**
* Return the fingerprint from application specific data stored on tag, or
* null if it doesn't exist.
*
* @param idx Index of the key to return the fingerprint from.
* @return The fingerprint of the requested key, or null if not found.
*/
byte[] getMasterKeyFingerprint(int idx) throws IOException;
/**
* Resets security token, which deletes all keys and data objects.
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
* Afterwards, the token is reactivated.
*/
void resetAndWipeToken() throws IOException;
/**
* Puts a key on the token in the given slot.
*
* @param slot The slot on the token where the key should be stored:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
*/
void putKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException;
/**
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
* (0x7F21) can exceed this length.
*
* @param dataObject The data object to be stored.
* @param data The data to store in the object
*/
void putData(int dataObject, byte[] data) throws IOException;
void setTransport(Transport mTransport);
}

View File

@@ -78,7 +78,7 @@ public class SmartcardDevice {
}
public boolean containsKey(KeyType keyType) throws IOException {
return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
return !keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
}
public boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {

View File

@@ -1,7 +1,6 @@
package org.sufficientlysecure.keychain.smartcard;
import android.app.Activity;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
@@ -10,79 +9,29 @@ import android.hardware.usb.UsbDevice;
import android.hardware.usb.UsbManager;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.ui.UsbEventReceiverActivity;
import org.sufficientlysecure.keychain.util.Log;
import java.util.Collections;
import java.util.HashMap;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicBoolean;
public class UsbConnectionManager {
private static final String LOG_TAG = UsbConnectionManager.class.getName();
private static final String ACTION_USB_PERMISSION = Constants.PACKAGE_NAME + ".USB_PERMITSSION";
private final Semaphore mRunning = new Semaphore(1);
private final Set<UsbDevice> mProcessedDevices = Collections.newSetFromMap(new ConcurrentHashMap<UsbDevice, Boolean>());
private final AtomicBoolean mStopped = new AtomicBoolean(false);
private Activity mActivity;
private final Thread mWatchThread = new Thread() {
@Override
public void run() {
final UsbManager usbManager = (UsbManager) mActivity.getSystemService(Context.USB_SERVICE);
while (!mStopped.get()) {
try {
mRunning.acquire();
} catch (InterruptedException e) {
}
mRunning.release();
if (mStopped.get()) return;
//
final UsbDevice device = getDevice(usbManager);
if (device != null && !mProcessedDevices.contains(device)) {
mProcessedDevices.add(device);
final Intent intent = new Intent(ACTION_USB_PERMISSION);
IntentFilter filter = new IntentFilter();
filter.addAction(ACTION_USB_PERMISSION);
mActivity.registerReceiver(mUsbReceiver, filter);
Log.d(LOG_TAG, "Requesting permission for " + device.getDeviceName());
usbManager.requestPermission(device, PendingIntent.getBroadcast(mActivity, 0, intent, 0));
}
try {
sleep(1000);
} catch (InterruptedException ignored) {
}
}
}
};
private OnDiscoveredUsbDeviceListener mListener;
/**
* Receives broadcast when a supported USB device is attached, detached or
* when a permission to communicate to the device has been granted.
* Receives broadcast when a supported USB device get permission.
*/
private final BroadcastReceiver mUsbReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
UsbDevice usbDevice = (UsbDevice) intent.getParcelableExtra(UsbManager.EXTRA_DEVICE);
String deviceName = usbDevice.getDeviceName();
if (ACTION_USB_PERMISSION.equals(action)) {
if (UsbEventReceiverActivity.ACTION_USB_PERMISSION.equals(action)) {
UsbDevice usbDevice = intent.getParcelableExtra(UsbManager.EXTRA_DEVICE);
boolean permission = intent.getBooleanExtra(UsbManager.EXTRA_PERMISSION_GRANTED,
false);
Log.d(LOG_TAG, "ACTION_USB_PERMISSION: " + permission + " Device: " + deviceName);
if (permission) {
interceptIntent(intent);
Log.d(Constants.TAG, "Got permission for " + usbDevice.getDeviceName());
mListener.usbDeviceDiscovered(usbDevice);
}
context.unregisterReceiver(mUsbReceiver);
}
}
};
@@ -90,59 +39,16 @@ public class UsbConnectionManager {
public UsbConnectionManager(final Activity activity, final OnDiscoveredUsbDeviceListener listener) {
this.mActivity = activity;
this.mListener = listener;
mRunning.acquireUninterruptibly();
mWatchThread.start();
}
private static UsbDevice getDevice(UsbManager manager) {
HashMap<String, UsbDevice> deviceList = manager.getDeviceList();
for (UsbDevice device : deviceList.values()) {
if (device.getVendorId() == 0x1050 && (device.getProductId() == 0x0112 || device.getProductId() == 0x0115)) {
return device;
}
}
return null;
public void onStart() {
final IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction(UsbEventReceiverActivity.ACTION_USB_PERMISSION);
mActivity.registerReceiver(mUsbReceiver, intentFilter);
}
public void startListeningForDevices() {
mRunning.release();
}
public void stopListeningForDevices() {
mRunning.acquireUninterruptibly();
}
public void interceptIntent(final Intent intent) {
if (intent == null || intent.getAction() == null) return;
switch (intent.getAction()) {
/*case UsbManager.ACTION_USB_DEVICE_ATTACHED: {
final UsbManager usbManager = (UsbManager) mActivity.getSystemService(Context.USB_SERVICE);
final UsbDevice device = intent.getParcelableExtra(UsbManager.EXTRA_DEVICE);
Intent usbI = new Intent(mActivity, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP | Intent.FLAG_ACTIVITY_CLEAR_TOP);
usbI.setAction(ACTION_USB_PERMISSION);
usbI.putExtra(UsbManager.EXTRA_DEVICE, device);
PendingIntent pi = PendingIntent.getActivity(mActivity, 0, usbI, PendingIntent.FLAG_CANCEL_CURRENT);
usbManager.requestPermission(device, pi);
break;
}*/
case ACTION_USB_PERMISSION: {
UsbDevice device = intent.getParcelableExtra(UsbManager.EXTRA_DEVICE);
if (device != null)
mListener.usbDeviceDiscovered(device);
break;
}
default:
break;
}
}
public void onDestroy() {
mStopped.set(true);
mRunning.release();
try {
mActivity.unregisterReceiver(mUsbReceiver);
} catch (IllegalArgumentException ignore) {
}
mActivity = null;
public void onStop() {
mActivity.unregisterReceiver(mUsbReceiver);
}
}

View File

@@ -0,0 +1,42 @@
package org.sufficientlysecure.keychain.ui;
import android.app.Activity;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.hardware.usb.UsbDevice;
import android.hardware.usb.UsbManager;
import android.os.Bundle;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.util.Log;
public class UsbEventReceiverActivity extends Activity {
public static final String ACTION_USB_PERMISSION =
"org.sufficientlysecure.keychain.ui.USB_PERMISSION";
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
}
@Override
protected void onResume() {
super.onResume();
final UsbManager usbManager = (UsbManager) getSystemService(Context.USB_SERVICE);
Intent intent = getIntent();
if (intent != null) {
if (UsbManager.ACTION_USB_DEVICE_ATTACHED.equals(intent.getAction())) {
UsbDevice usbDevice = intent.getParcelableExtra(UsbManager.EXTRA_DEVICE);
Log.d(Constants.TAG, "Requesting permission for " + usbDevice.getDeviceName());
usbManager.requestPermission(usbDevice,
PendingIntent.getBroadcast(this, 0, new Intent(ACTION_USB_PERMISSION), 0));
}
}
// Close the activity
finish();
}
}

View File

@@ -254,9 +254,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity
*/
@Override
public void onNewIntent(final Intent intent) {
if (!mTagDispatcher.interceptIntent(intent)) {
mUsbDispatcher.interceptIntent(intent);
}
mTagDispatcher.interceptIntent(intent);
}
private void handleNfcError(IOException e) {
@@ -374,7 +372,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity
Log.d(Constants.TAG, "BaseNfcActivity.onPause");
mTagDispatcher.disableExclusiveNfc();
mUsbDispatcher.stopListeningForDevices();
// mUsbDispatcher.stopListeningForDevices();
}
/**
@@ -385,7 +383,6 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity
super.onResume();
Log.d(Constants.TAG, "BaseNfcActivity.onResume");
mTagDispatcher.enableExclusiveNfc();
mUsbDispatcher.startListeningForDevices();
}
protected void obtainSecurityTokenPin(RequiredInputParcel requiredInput) {
@@ -568,8 +565,14 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity
}
@Override
protected void onDestroy() {
super.onDestroy();
mUsbDispatcher.onDestroy();
protected void onStop() {
super.onStop();
mUsbDispatcher.onStop();
}
@Override
protected void onStart() {
super.onStart();
mUsbDispatcher.onStart();
}
}

View File

@@ -1,4 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<!--
Based on https://github.com/Yubico/yubikey-personalization/blob/master/ykcore/ykdef.h
Note that values are decimal.
-->
<resources xmlns:android="http://schemas.android.com/apk/res/android">
<usb-device class="11"/>
<!-- Yubikey NEO OTP + CCID-->
<usb-device class="11" vendor-id="4176" product-id="273"/>
<!-- Yubikey NEO CCID-->
<usb-device class="11" vendor-id="4176" product-id="274"/>
<!-- Yubikey NEO U2F + CCID-->
<usb-device class="11" vendor-id="4176" product-id="277"/>
<!-- Yubikey NEO OTP + U2F + CCID-->
<usb-device class="11" vendor-id="4176" product-id="278"/>
<!-- Yubikey 4 CCID-->
<usb-device class="11" vendor-id="4176" product-id="1028"/>
<!-- Yubikey 4 OTP + CCID-->
<usb-device class="11" vendor-id="4176" product-id="1029"/>
<!-- Yubikey 4 U2F + CCID-->
<usb-device class="11" vendor-id="4176" product-id="1030"/>
<!-- Yubikey 4 OTP + U2F + CCID-->
<usb-device class="11" vendor-id="4176" product-id="1031"/>
</resources>