Extract OpenPGP card operation logic from SecurityTokenConnection class
This commit is contained in:
@@ -0,0 +1,165 @@
|
||||
package org.sufficientlysecure.keychain.securitytoken;
|
||||
|
||||
|
||||
import java.io.IOException;
|
||||
import java.security.InvalidKeyException;
|
||||
import java.security.Key;
|
||||
import java.security.MessageDigest;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
|
||||
import android.support.annotation.NonNull;
|
||||
|
||||
import javax.crypto.Cipher;
|
||||
import javax.crypto.NoSuchPaddingException;
|
||||
import javax.crypto.spec.SecretKeySpec;
|
||||
import org.bouncycastle.asn1.nist.NISTNamedCurves;
|
||||
import org.bouncycastle.asn1.x9.X9ECParameters;
|
||||
import org.bouncycastle.jcajce.util.MessageDigestUtils;
|
||||
import org.bouncycastle.math.ec.ECPoint;
|
||||
import org.bouncycastle.openpgp.PGPException;
|
||||
import org.bouncycastle.openpgp.operator.PGPPad;
|
||||
import org.bouncycastle.openpgp.operator.jcajce.JcaKeyFingerprintCalculator;
|
||||
import org.bouncycastle.util.Arrays;
|
||||
import org.bouncycastle.util.encoders.Hex;
|
||||
import org.sufficientlysecure.keychain.pgp.CanonicalizedPublicKey;
|
||||
|
||||
|
||||
public class PsoDecryptUseCase {
|
||||
private final SecurityTokenConnection connection;
|
||||
private final JcaKeyFingerprintCalculator fingerprintCalculator;
|
||||
|
||||
public static PsoDecryptUseCase create(SecurityTokenConnection connection) {
|
||||
return new PsoDecryptUseCase(connection);
|
||||
}
|
||||
|
||||
private PsoDecryptUseCase(SecurityTokenConnection connection) {
|
||||
this.connection = connection;
|
||||
this.fingerprintCalculator = new JcaKeyFingerprintCalculator();
|
||||
}
|
||||
|
||||
public byte[] decryptSessionKey(@NonNull byte[] encryptedSessionKey,
|
||||
CanonicalizedPublicKey publicKey)
|
||||
throws IOException {
|
||||
final KeyFormat kf = connection.getOpenPgpCapabilities().getFormatForKeyType(KeyType.ENCRYPT);
|
||||
|
||||
connection.verifyPinForOther();
|
||||
|
||||
byte[] data;
|
||||
byte[] dataLen;
|
||||
int pLen = 0;
|
||||
|
||||
X9ECParameters x9Params;
|
||||
|
||||
switch (kf.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
data = Arrays.copyOfRange(encryptedSessionKey, 2, encryptedSessionKey.length);
|
||||
if (data[0] != 0) {
|
||||
data = Arrays.prepend(data, (byte) 0x00);
|
||||
}
|
||||
break;
|
||||
|
||||
case ECKeyFormatType:
|
||||
pLen = ((((encryptedSessionKey[0] & 0xff) << 8) + (encryptedSessionKey[1] & 0xff)) + 7) / 8;
|
||||
data = new byte[pLen];
|
||||
|
||||
System.arraycopy(encryptedSessionKey, 2, data, 0, pLen);
|
||||
|
||||
final ECKeyFormat eckf = (ECKeyFormat) kf;
|
||||
x9Params = NISTNamedCurves.getByOID(eckf.getCurveOID());
|
||||
|
||||
final ECPoint p = x9Params.getCurve().decodePoint(data);
|
||||
if (!p.isValid()) {
|
||||
throw new CardException("Invalid EC point!");
|
||||
}
|
||||
|
||||
data = p.getEncoded(false);
|
||||
|
||||
if (data.length < 128) {
|
||||
dataLen = new byte[]{(byte) data.length};
|
||||
} else {
|
||||
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
|
||||
}
|
||||
data = Arrays.concatenate(Hex.decode("86"), dataLen, data);
|
||||
|
||||
if (data.length < 128) {
|
||||
dataLen = new byte[]{(byte) data.length};
|
||||
} else {
|
||||
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
|
||||
}
|
||||
data = Arrays.concatenate(Hex.decode("7F49"), dataLen, data);
|
||||
|
||||
if (data.length < 128) {
|
||||
dataLen = new byte[]{(byte) data.length};
|
||||
} else {
|
||||
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
|
||||
}
|
||||
data = Arrays.concatenate(Hex.decode("A6"), dataLen, data);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new CardException("Unknown encryption key type!");
|
||||
}
|
||||
|
||||
CommandApdu command = connection.getCommandFactory().createDecipherCommand(data);
|
||||
ResponseApdu response = connection.communicate(command);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Deciphering with Security token failed on receive", response.getSw());
|
||||
}
|
||||
|
||||
switch (connection.getOpenPgpCapabilities().getFormatForKeyType(KeyType.ENCRYPT).keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
return response.getData();
|
||||
|
||||
/* From 3.x OpenPGP card specification :
|
||||
In case of ECDH the card supports a partial decrypt only.
|
||||
With its own private key and the given public key the card calculates a shared secret
|
||||
in compliance with the Elliptic Curve Key Agreement Scheme from Diffie-Hellman.
|
||||
The shared secret is returned in the response, all other calculation for deciphering
|
||||
are done outside of the card.
|
||||
|
||||
The shared secret obtained is a KEK (Key Encryption Key) that is used to wrap the
|
||||
session key.
|
||||
|
||||
From rfc6637#section-13 :
|
||||
This document explicitly discourages the use of algorithms other than AES as a KEK algorithm.
|
||||
*/
|
||||
case ECKeyFormatType:
|
||||
data = response.getData();
|
||||
|
||||
final byte[] keyEnc = new byte[encryptedSessionKey[pLen + 2]];
|
||||
|
||||
System.arraycopy(encryptedSessionKey, 2 + pLen + 1, keyEnc, 0, keyEnc.length);
|
||||
|
||||
try {
|
||||
final MessageDigest kdf = MessageDigest.getInstance(MessageDigestUtils.getDigestName(publicKey.getSecurityTokenHashAlgorithm()));
|
||||
|
||||
kdf.update(new byte[]{(byte) 0, (byte) 0, (byte) 0, (byte) 1});
|
||||
kdf.update(data);
|
||||
kdf.update(publicKey.createUserKeyingMaterial(fingerprintCalculator));
|
||||
|
||||
final byte[] kek = kdf.digest();
|
||||
final Cipher c = Cipher.getInstance("AESWrap");
|
||||
|
||||
c.init(Cipher.UNWRAP_MODE, new SecretKeySpec(kek, 0, publicKey.getSecurityTokenSymmetricKeySize() / 8, "AES"));
|
||||
|
||||
final Key paddedSessionKey = c.unwrap(keyEnc, "Session", Cipher.SECRET_KEY);
|
||||
|
||||
Arrays.fill(kek, (byte) 0);
|
||||
|
||||
return PGPPad.unpadSessionData(paddedSessionKey.getEncoded());
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
throw new CardException("Unknown digest/encryption algorithm!");
|
||||
} catch (NoSuchPaddingException e) {
|
||||
throw new CardException("Unknown padding algorithm!");
|
||||
} catch (PGPException e) {
|
||||
throw new CardException(e.getMessage());
|
||||
} catch (InvalidKeyException e) {
|
||||
throw new CardException("Invalid KEK!");
|
||||
}
|
||||
|
||||
default:
|
||||
throw new CardException("Unknown encryption key type!");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,177 @@
|
||||
package org.sufficientlysecure.keychain.securitytoken;
|
||||
|
||||
|
||||
import java.io.IOException;
|
||||
import java.math.BigInteger;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.security.interfaces.ECPrivateKey;
|
||||
import java.security.interfaces.ECPublicKey;
|
||||
import java.security.interfaces.RSAPrivateCrtKey;
|
||||
|
||||
import android.support.annotation.VisibleForTesting;
|
||||
|
||||
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
|
||||
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
|
||||
import org.sufficientlysecure.keychain.util.Passphrase;
|
||||
|
||||
|
||||
public class SecurityTokenChangeKeyUseCase {
|
||||
private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
private final SecurityTokenConnection connection;
|
||||
|
||||
public static SecurityTokenChangeKeyUseCase create(SecurityTokenConnection stConnection) {
|
||||
return new SecurityTokenChangeKeyUseCase(stConnection);
|
||||
}
|
||||
|
||||
private SecurityTokenChangeKeyUseCase(SecurityTokenConnection connection) {
|
||||
this.connection = connection;
|
||||
}
|
||||
|
||||
public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase, Passphrase adminPin) throws IOException {
|
||||
long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
|
||||
byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
|
||||
KeyType keyType = KeyType.from(secretKey);
|
||||
|
||||
if (keyType == null) {
|
||||
throw new IOException("Inappropriate key flags for smart card key.");
|
||||
}
|
||||
|
||||
// Slot is empty, or contains this key already. PUT KEY operation is safe
|
||||
boolean canPutKey = isSlotEmpty(keyType)
|
||||
|| keyMatchesFingerPrint(keyType, secretKey.getFingerprint());
|
||||
|
||||
if (!canPutKey) {
|
||||
throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
|
||||
keyType.toString()));
|
||||
}
|
||||
|
||||
putKey(keyType, secretKey, passphrase, adminPin);
|
||||
putData(adminPin, keyType.getFingerprintObjectId(), secretKey.getFingerprint());
|
||||
putData(adminPin, keyType.getTimestampObjectId(), timestampBytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Puts a key on the token in the given slot.
|
||||
*
|
||||
* @param slot The slot on the token where the key should be stored:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
*/
|
||||
@VisibleForTesting
|
||||
void putKey(KeyType slot, CanonicalizedSecretKey secretKey, Passphrase passphrase, Passphrase adminPin)
|
||||
throws IOException {
|
||||
RSAPrivateCrtKey crtSecretKey;
|
||||
ECPrivateKey ecSecretKey;
|
||||
ECPublicKey ecPublicKey;
|
||||
|
||||
connection.verifyAdminPin(adminPin);
|
||||
|
||||
// Now we're ready to communicate with the token.
|
||||
byte[] keyBytes;
|
||||
|
||||
try {
|
||||
secretKey.unlock(passphrase);
|
||||
|
||||
OpenPgpCapabilities openPgpCapabilities = connection.getOpenPgpCapabilities();
|
||||
|
||||
setKeyAttributes(adminPin, slot, SecurityTokenUtils.attributesFromSecretKey(slot, secretKey,
|
||||
openPgpCapabilities.getFormatForKeyType(slot)));
|
||||
|
||||
KeyFormat formatForKeyType = openPgpCapabilities.getFormatForKeyType(slot);
|
||||
switch (formatForKeyType.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
if (!secretKey.isRSA()) {
|
||||
throw new IOException("Security Token not configured for RSA key.");
|
||||
}
|
||||
crtSecretKey = secretKey.getSecurityTokenRSASecretKey();
|
||||
|
||||
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
|
||||
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
|
||||
throw new IOException("Invalid public exponent for smart Security Token.");
|
||||
}
|
||||
|
||||
keyBytes = SecurityTokenUtils.createRSAPrivKeyTemplate(crtSecretKey, slot,
|
||||
(RSAKeyFormat) formatForKeyType);
|
||||
break;
|
||||
|
||||
case ECKeyFormatType:
|
||||
if (!secretKey.isEC()) {
|
||||
throw new IOException("Security Token not configured for EC key.");
|
||||
}
|
||||
|
||||
secretKey.unlock(passphrase);
|
||||
ecSecretKey = secretKey.getSecurityTokenECSecretKey();
|
||||
ecPublicKey = secretKey.getSecurityTokenECPublicKey();
|
||||
|
||||
keyBytes = SecurityTokenUtils.createECPrivKeyTemplate(ecSecretKey, ecPublicKey, slot,
|
||||
(ECKeyFormat) formatForKeyType);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new IOException("Key type unsupported by security token.");
|
||||
}
|
||||
} catch (PgpGeneralException e) {
|
||||
throw new IOException(e.getMessage());
|
||||
}
|
||||
|
||||
CommandApdu apdu = connection.getCommandFactory().createPutKeyCommand(keyBytes);
|
||||
ResponseApdu response = connection.communicate(apdu);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Key export to Security Token failed", response.getSw());
|
||||
}
|
||||
}
|
||||
|
||||
private void setKeyAttributes(Passphrase adminPin, KeyType keyType, byte[] data) throws IOException {
|
||||
if (!connection.getOpenPgpCapabilities().isAttributesChangable()) {
|
||||
return;
|
||||
}
|
||||
|
||||
putData(adminPin, keyType.getAlgoAttributeSlot(), data);
|
||||
|
||||
connection.refreshConnectionCapabilities();
|
||||
}
|
||||
|
||||
/**
|
||||
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
|
||||
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
|
||||
* (0x7F21) can exceed this length.
|
||||
*
|
||||
* @param dataObject The data object to be stored.
|
||||
* @param data The data to store in the object
|
||||
*/
|
||||
private void putData(Passphrase adminPin, int dataObject, byte[] data) throws IOException {
|
||||
if (data.length > 254) {
|
||||
throw new IOException("Cannot PUT DATA with length > 254");
|
||||
}
|
||||
// TODO use admin pin regardless, if we have it?
|
||||
if (dataObject == 0x0101 || dataObject == 0x0103) {
|
||||
connection.verifyPinForOther();
|
||||
} else {
|
||||
connection.verifyAdminPin(adminPin);
|
||||
}
|
||||
|
||||
CommandApdu command = connection.getCommandFactory().createPutDataCommand(dataObject, data);
|
||||
ResponseApdu response = connection.communicate(command);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Failed to put data.", response.getSw());
|
||||
}
|
||||
}
|
||||
|
||||
private boolean isSlotEmpty(KeyType keyType) throws IOException {
|
||||
// Note: special case: This should not happen, but happens with
|
||||
// https://github.com/FluffyKaon/OpenPGP-Card, thus for now assume true
|
||||
if (connection.getKeyFingerprint(keyType) == null) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
|
||||
}
|
||||
|
||||
private boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
|
||||
return java.util.Arrays.equals(connection.getKeyFingerprint(keyType), fingerprint);
|
||||
}
|
||||
}
|
||||
@@ -17,52 +17,23 @@
|
||||
|
||||
package org.sufficientlysecure.keychain.securitytoken;
|
||||
|
||||
|
||||
import java.io.ByteArrayOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.util.List;
|
||||
|
||||
import android.content.Context;
|
||||
import android.support.annotation.NonNull;
|
||||
import android.support.annotation.Nullable;
|
||||
import android.support.annotation.VisibleForTesting;
|
||||
|
||||
import org.bouncycastle.asn1.ASN1Encodable;
|
||||
import org.bouncycastle.asn1.ASN1Integer;
|
||||
import org.bouncycastle.asn1.ASN1OutputStream;
|
||||
import org.bouncycastle.asn1.DERSequence;
|
||||
import org.bouncycastle.asn1.nist.NISTNamedCurves;
|
||||
import org.bouncycastle.asn1.x9.X9ECParameters;
|
||||
import org.bouncycastle.bcpg.HashAlgorithmTags;
|
||||
import org.bouncycastle.jcajce.util.MessageDigestUtils;
|
||||
import org.bouncycastle.math.ec.ECPoint;
|
||||
import org.bouncycastle.openpgp.PGPException;
|
||||
import org.bouncycastle.openpgp.operator.PGPPad;
|
||||
import org.bouncycastle.openpgp.operator.jcajce.JcaKeyFingerprintCalculator;
|
||||
import org.bouncycastle.util.Arrays;
|
||||
import org.bouncycastle.util.encoders.Hex;
|
||||
import org.sufficientlysecure.keychain.Constants;
|
||||
import org.sufficientlysecure.keychain.pgp.CanonicalizedPublicKey;
|
||||
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
|
||||
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
|
||||
|
||||
import javax.crypto.Cipher;
|
||||
import javax.crypto.NoSuchPaddingException;
|
||||
import javax.crypto.spec.SecretKeySpec;
|
||||
|
||||
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenInfo.TokenType;
|
||||
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenInfo.TransportType;
|
||||
import org.sufficientlysecure.keychain.util.Log;
|
||||
import org.sufficientlysecure.keychain.util.Passphrase;
|
||||
|
||||
import java.io.ByteArrayOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.math.BigInteger;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.security.InvalidKeyException;
|
||||
import java.security.Key;
|
||||
import java.security.MessageDigest;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
import java.security.interfaces.ECPrivateKey;
|
||||
import java.security.interfaces.ECPublicKey;
|
||||
import java.security.interfaces.RSAPrivateCrtKey;
|
||||
import java.util.List;
|
||||
|
||||
|
||||
/**
|
||||
* This class provides a communication interface to OpenPGP applications on ISO SmartCard compliant
|
||||
@@ -74,12 +45,8 @@ public class SecurityTokenConnection {
|
||||
|
||||
private static final String AID_PREFIX_FIDESMO = "A000000617";
|
||||
|
||||
private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
private static SecurityTokenConnection sCachedInstance;
|
||||
|
||||
private final JcaKeyFingerprintCalculator fingerprintCalculator = new JcaKeyFingerprintCalculator();
|
||||
|
||||
@NonNull
|
||||
private final Transport mTransport;
|
||||
@Nullable
|
||||
@@ -120,6 +87,20 @@ public class SecurityTokenConnection {
|
||||
this.commandFactory = commandFactory;
|
||||
}
|
||||
|
||||
OpenPgpCapabilities getOpenPgpCapabilities() {
|
||||
return mOpenPgpCapabilities;
|
||||
}
|
||||
|
||||
OpenPgpCommandApduFactory getCommandFactory() {
|
||||
return commandFactory;
|
||||
}
|
||||
|
||||
void maybeInvalidatePw1() {
|
||||
if (!mOpenPgpCapabilities.isPw1ValidForMultipleSignatures()) {
|
||||
mPw1ValidatedForSignature = false;
|
||||
}
|
||||
}
|
||||
|
||||
private String getHolderName(byte[] name) {
|
||||
try {
|
||||
return (new String(name, 4, name[3])).replace('<', ' ');
|
||||
@@ -133,43 +114,6 @@ public class SecurityTokenConnection {
|
||||
}
|
||||
}
|
||||
|
||||
public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase, Passphrase adminPin) throws IOException {
|
||||
long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
|
||||
byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
|
||||
KeyType keyType = KeyType.from(secretKey);
|
||||
|
||||
if (keyType == null) {
|
||||
throw new IOException("Inappropriate key flags for smart card key.");
|
||||
}
|
||||
|
||||
// Slot is empty, or contains this key already. PUT KEY operation is safe
|
||||
boolean canPutKey = isSlotEmpty(keyType)
|
||||
|| keyMatchesFingerPrint(keyType, secretKey.getFingerprint());
|
||||
|
||||
if (!canPutKey) {
|
||||
throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
|
||||
keyType.toString()));
|
||||
}
|
||||
|
||||
putKey(keyType, secretKey, passphrase, adminPin);
|
||||
putData(adminPin, keyType.getFingerprintObjectId(), secretKey.getFingerprint());
|
||||
putData(adminPin, keyType.getTimestampObjectId(), timestampBytes);
|
||||
}
|
||||
|
||||
private boolean isSlotEmpty(KeyType keyType) throws IOException {
|
||||
// Note: special case: This should not happen, but happens with
|
||||
// https://github.com/FluffyKaon/OpenPGP-Card, thus for now assume true
|
||||
if (getKeyFingerprint(keyType) == null) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
|
||||
}
|
||||
|
||||
private boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
|
||||
return java.util.Arrays.equals(getKeyFingerprint(keyType), fingerprint);
|
||||
}
|
||||
|
||||
public void connectIfNecessary(Context context) throws IOException {
|
||||
if (isConnected()) {
|
||||
return;
|
||||
@@ -239,7 +183,7 @@ public class SecurityTokenConnection {
|
||||
tokenType = TokenType.UNKNOWN;
|
||||
}
|
||||
|
||||
private void refreshConnectionCapabilities() throws IOException {
|
||||
void refreshConnectionCapabilities() throws IOException {
|
||||
byte[] rawOpenPgpCapabilities = getData(0x00, 0x6E);
|
||||
|
||||
OpenPgpCapabilities openPgpCapabilities = new OpenPgpCapabilities(rawOpenPgpCapabilities);
|
||||
@@ -299,145 +243,14 @@ public class SecurityTokenConnection {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Call DECIPHER command
|
||||
*
|
||||
* @param encryptedSessionKey the encoded session key
|
||||
* @param publicKey
|
||||
* @return the decoded session key
|
||||
*/
|
||||
public byte[] decryptSessionKey(@NonNull byte[] encryptedSessionKey,
|
||||
CanonicalizedPublicKey publicKey)
|
||||
throws IOException {
|
||||
final KeyFormat kf = mOpenPgpCapabilities.getFormatForKeyType(KeyType.ENCRYPT);
|
||||
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
verifyPinForOther();
|
||||
}
|
||||
|
||||
byte[] data;
|
||||
byte[] dataLen;
|
||||
int pLen = 0;
|
||||
|
||||
X9ECParameters x9Params;
|
||||
|
||||
switch (kf.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
data = Arrays.copyOfRange(encryptedSessionKey, 2, encryptedSessionKey.length);
|
||||
if (data[0] != 0) {
|
||||
data = Arrays.prepend(data, (byte) 0x00);
|
||||
}
|
||||
break;
|
||||
|
||||
case ECKeyFormatType:
|
||||
pLen = ((((encryptedSessionKey[0] & 0xff) << 8) + (encryptedSessionKey[1] & 0xff)) + 7) / 8;
|
||||
data = new byte[pLen];
|
||||
|
||||
System.arraycopy(encryptedSessionKey, 2, data, 0, pLen);
|
||||
|
||||
final ECKeyFormat eckf = (ECKeyFormat) kf;
|
||||
x9Params = NISTNamedCurves.getByOID(eckf.getCurveOID());
|
||||
|
||||
final ECPoint p = x9Params.getCurve().decodePoint(data);
|
||||
if (!p.isValid()) {
|
||||
throw new CardException("Invalid EC point!");
|
||||
}
|
||||
|
||||
data = p.getEncoded(false);
|
||||
|
||||
if (data.length < 128) {
|
||||
dataLen = new byte[]{(byte) data.length};
|
||||
} else {
|
||||
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
|
||||
}
|
||||
data = Arrays.concatenate(Hex.decode("86"), dataLen, data);
|
||||
|
||||
if (data.length < 128) {
|
||||
dataLen = new byte[]{(byte) data.length};
|
||||
} else {
|
||||
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
|
||||
}
|
||||
data = Arrays.concatenate(Hex.decode("7F49"), dataLen, data);
|
||||
|
||||
if (data.length < 128) {
|
||||
dataLen = new byte[]{(byte) data.length};
|
||||
} else {
|
||||
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
|
||||
}
|
||||
data = Arrays.concatenate(Hex.decode("A6"), dataLen, data);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new CardException("Unknown encryption key type!");
|
||||
}
|
||||
|
||||
CommandApdu command = commandFactory.createDecipherCommand(data);
|
||||
ResponseApdu response = communicate(command);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Deciphering with Security token failed on receive", response.getSw());
|
||||
}
|
||||
|
||||
switch (mOpenPgpCapabilities.getFormatForKeyType(KeyType.ENCRYPT).keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
return response.getData();
|
||||
|
||||
/* From 3.x OpenPGP card specification :
|
||||
In case of ECDH the card supports a partial decrypt only.
|
||||
With its own private key and the given public key the card calculates a shared secret
|
||||
in compliance with the Elliptic Curve Key Agreement Scheme from Diffie-Hellman.
|
||||
The shared secret is returned in the response, all other calculation for deciphering
|
||||
are done outside of the card.
|
||||
|
||||
The shared secret obtained is a KEK (Key Encryption Key) that is used to wrap the
|
||||
session key.
|
||||
|
||||
From rfc6637#section-13 :
|
||||
This document explicitly discourages the use of algorithms other than AES as a KEK algorithm.
|
||||
*/
|
||||
case ECKeyFormatType:
|
||||
data = response.getData();
|
||||
|
||||
final byte[] keyEnc = new byte[encryptedSessionKey[pLen + 2]];
|
||||
|
||||
System.arraycopy(encryptedSessionKey, 2 + pLen + 1, keyEnc, 0, keyEnc.length);
|
||||
|
||||
try {
|
||||
final MessageDigest kdf = MessageDigest.getInstance(MessageDigestUtils.getDigestName(publicKey.getSecurityTokenHashAlgorithm()));
|
||||
|
||||
kdf.update(new byte[]{(byte) 0, (byte) 0, (byte) 0, (byte) 1});
|
||||
kdf.update(data);
|
||||
kdf.update(publicKey.createUserKeyingMaterial(fingerprintCalculator));
|
||||
|
||||
final byte[] kek = kdf.digest();
|
||||
final Cipher c = Cipher.getInstance("AESWrap");
|
||||
|
||||
c.init(Cipher.UNWRAP_MODE, new SecretKeySpec(kek, 0, publicKey.getSecurityTokenSymmetricKeySize() / 8, "AES"));
|
||||
|
||||
final Key paddedSessionKey = c.unwrap(keyEnc, "Session", Cipher.SECRET_KEY);
|
||||
|
||||
Arrays.fill(kek, (byte) 0);
|
||||
|
||||
return PGPPad.unpadSessionData(paddedSessionKey.getEncoded());
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
throw new CardException("Unknown digest/encryption algorithm!");
|
||||
} catch (NoSuchPaddingException e) {
|
||||
throw new CardException("Unknown padding algorithm!");
|
||||
} catch (PGPException e) {
|
||||
throw new CardException(e.getMessage());
|
||||
} catch (InvalidKeyException e) {
|
||||
throw new CardException("Invalid KEK!");
|
||||
}
|
||||
|
||||
default:
|
||||
throw new CardException("Unknown encryption key type!");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Verifies the user's PW1 with the appropriate mode.
|
||||
*/
|
||||
private void verifyPinForSignature() throws IOException {
|
||||
void verifyPinForSignature() throws IOException {
|
||||
if (mPw1ValidatedForSignature) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (mPin == null) {
|
||||
throw new IllegalStateException("Connection not initialized with Pin!");
|
||||
}
|
||||
@@ -454,7 +267,10 @@ public class SecurityTokenConnection {
|
||||
/**
|
||||
* Verifies the user's PW1 with the appropriate mode.
|
||||
*/
|
||||
private void verifyPinForOther() throws IOException {
|
||||
void verifyPinForOther() throws IOException {
|
||||
if (mPw1ValidatedForDecrypt) {
|
||||
return;
|
||||
}
|
||||
if (mPin == null) {
|
||||
throw new IllegalStateException("Connection not initialized with Pin!");
|
||||
}
|
||||
@@ -473,7 +289,10 @@ public class SecurityTokenConnection {
|
||||
/**
|
||||
* Verifies the user's PW1 or PW3 with the appropriate mode.
|
||||
*/
|
||||
private void verifyAdminPin(Passphrase adminPin) throws IOException {
|
||||
void verifyAdminPin(Passphrase adminPin) throws IOException {
|
||||
if (mPw3Validated) {
|
||||
return;
|
||||
}
|
||||
// Command APDU for VERIFY command (page 32)
|
||||
ResponseApdu response =
|
||||
communicate(commandFactory.createVerifyPw3Command(adminPin.toStringUnsafe().getBytes()));
|
||||
@@ -484,117 +303,6 @@ public class SecurityTokenConnection {
|
||||
mPw3Validated = true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
|
||||
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
|
||||
* (0x7F21) can exceed this length.
|
||||
*
|
||||
* @param dataObject The data object to be stored.
|
||||
* @param data The data to store in the object
|
||||
*/
|
||||
private void putData(Passphrase adminPin, int dataObject, byte[] data) throws IOException {
|
||||
if (data.length > 254) {
|
||||
throw new IOException("Cannot PUT DATA with length > 254");
|
||||
}
|
||||
// TODO use admin pin regardless, if we have it?
|
||||
if (dataObject == 0x0101 || dataObject == 0x0103) {
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
verifyPinForOther();
|
||||
}
|
||||
} else if (!mPw3Validated) {
|
||||
verifyAdminPin(adminPin);
|
||||
}
|
||||
|
||||
CommandApdu command = commandFactory.createPutDataCommand(dataObject, data);
|
||||
ResponseApdu response = communicate(command); // put data
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Failed to put data.", response.getSw());
|
||||
}
|
||||
}
|
||||
|
||||
private void setKeyAttributes(Passphrase adminPin, KeyType keyType, byte[] data) throws IOException {
|
||||
if (!mOpenPgpCapabilities.isAttributesChangable()) {
|
||||
return;
|
||||
}
|
||||
|
||||
putData(adminPin, keyType.getAlgoAttributeSlot(), data);
|
||||
refreshConnectionCapabilities();
|
||||
}
|
||||
|
||||
/**
|
||||
* Puts a key on the token in the given slot.
|
||||
*
|
||||
* @param slot The slot on the token where the key should be stored:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
*/
|
||||
@VisibleForTesting
|
||||
void putKey(KeyType slot, CanonicalizedSecretKey secretKey, Passphrase passphrase, Passphrase adminPin)
|
||||
throws IOException {
|
||||
RSAPrivateCrtKey crtSecretKey;
|
||||
ECPrivateKey ecSecretKey;
|
||||
ECPublicKey ecPublicKey;
|
||||
|
||||
if (!mPw3Validated) {
|
||||
verifyAdminPin(adminPin);
|
||||
}
|
||||
|
||||
// Now we're ready to communicate with the token.
|
||||
byte[] keyBytes;
|
||||
|
||||
try {
|
||||
secretKey.unlock(passphrase);
|
||||
|
||||
setKeyAttributes(adminPin, slot, SecurityTokenUtils.attributesFromSecretKey(slot, secretKey,
|
||||
mOpenPgpCapabilities.getFormatForKeyType(slot)));
|
||||
|
||||
KeyFormat formatForKeyType = mOpenPgpCapabilities.getFormatForKeyType(slot);
|
||||
switch (formatForKeyType.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
if (!secretKey.isRSA()) {
|
||||
throw new IOException("Security Token not configured for RSA key.");
|
||||
}
|
||||
crtSecretKey = secretKey.getSecurityTokenRSASecretKey();
|
||||
|
||||
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
|
||||
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
|
||||
throw new IOException("Invalid public exponent for smart Security Token.");
|
||||
}
|
||||
|
||||
keyBytes = SecurityTokenUtils.createRSAPrivKeyTemplate(crtSecretKey, slot,
|
||||
(RSAKeyFormat) formatForKeyType);
|
||||
break;
|
||||
|
||||
case ECKeyFormatType:
|
||||
if (!secretKey.isEC()) {
|
||||
throw new IOException("Security Token not configured for EC key.");
|
||||
}
|
||||
|
||||
secretKey.unlock(passphrase);
|
||||
ecSecretKey = secretKey.getSecurityTokenECSecretKey();
|
||||
ecPublicKey = secretKey.getSecurityTokenECPublicKey();
|
||||
|
||||
keyBytes = SecurityTokenUtils.createECPrivKeyTemplate(ecSecretKey, ecPublicKey, slot,
|
||||
(ECKeyFormat) formatForKeyType);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new IOException("Key type unsupported by security token.");
|
||||
}
|
||||
} catch (PgpGeneralException e) {
|
||||
throw new IOException(e.getMessage());
|
||||
}
|
||||
|
||||
CommandApdu apdu = commandFactory.createPutKeyCommand(keyBytes);
|
||||
ResponseApdu response = communicate(apdu);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Key export to Security Token failed", response.getSw());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return fingerprints of all keys from application specific data stored
|
||||
* on tag, or null if data not available.
|
||||
@@ -635,168 +343,6 @@ public class SecurityTokenConnection {
|
||||
return response.getData();
|
||||
}
|
||||
|
||||
|
||||
private byte[] prepareDsi(byte[] hash, int hashAlgo) throws IOException {
|
||||
byte[] dsi;
|
||||
|
||||
Log.i(Constants.TAG, "Hash: " + hashAlgo);
|
||||
switch (hashAlgo) {
|
||||
case HashAlgorithmTags.SHA1:
|
||||
if (hash.length != 20) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode(
|
||||
"3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
|
||||
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
|
||||
+ "0605" + "2B0E03021A" // OID of SHA1
|
||||
+ "0500" // TLV coding of ZERO
|
||||
+ "0414"), hash); // 0x14 are 20 hash bytes
|
||||
break;
|
||||
case HashAlgorithmTags.RIPEMD160:
|
||||
if (hash.length != 20) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3021300906052B2403020105000414"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA224:
|
||||
if (hash.length != 28) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("302D300D06096086480165030402040500041C"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA256:
|
||||
if (hash.length != 32) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3031300D060960864801650304020105000420"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA384:
|
||||
if (hash.length != 48) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3041300D060960864801650304020205000430"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA512:
|
||||
if (hash.length != 64) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3051300D060960864801650304020305000440"), hash);
|
||||
break;
|
||||
default:
|
||||
throw new IOException("Not supported hash algo!");
|
||||
}
|
||||
return dsi;
|
||||
}
|
||||
|
||||
private byte[] prepareData(byte[] hash, int hashAlgo, KeyFormat keyFormat) throws IOException {
|
||||
byte[] data;
|
||||
switch (keyFormat.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
data = prepareDsi(hash, hashAlgo);
|
||||
break;
|
||||
case ECKeyFormatType:
|
||||
data = hash;
|
||||
break;
|
||||
default:
|
||||
throw new IOException("Not supported key type!");
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
|
||||
private byte[] encodeSignature(byte[] signature, KeyFormat keyFormat) throws IOException {
|
||||
// Make sure the signature we received is actually the expected number of bytes long!
|
||||
switch (keyFormat.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
// no encoding necessary
|
||||
int modulusLength = ((RSAKeyFormat) keyFormat).getModulusLength();
|
||||
if (signature.length != (modulusLength / 8)) {
|
||||
throw new IOException("Bad signature length! Expected " + (modulusLength / 8) +
|
||||
" bytes, got " + signature.length);
|
||||
}
|
||||
break;
|
||||
|
||||
case ECKeyFormatType:
|
||||
// "plain" encoding, see https://github.com/open-keychain/open-keychain/issues/2108
|
||||
if (signature.length % 2 != 0) {
|
||||
throw new IOException("Bad signature length!");
|
||||
}
|
||||
final byte[] br = new byte[signature.length / 2];
|
||||
final byte[] bs = new byte[signature.length / 2];
|
||||
for (int i = 0; i < br.length; ++i) {
|
||||
br[i] = signature[i];
|
||||
bs[i] = signature[br.length + i];
|
||||
}
|
||||
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
||||
ASN1OutputStream out = new ASN1OutputStream(baos);
|
||||
out.writeObject(new DERSequence(new ASN1Encodable[]{new ASN1Integer(br), new ASN1Integer(bs)}));
|
||||
out.flush();
|
||||
signature = baos.toByteArray();
|
||||
break;
|
||||
}
|
||||
return signature;
|
||||
}
|
||||
|
||||
/**
|
||||
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
|
||||
*
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
public byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
if (!mPw1ValidatedForSignature) {
|
||||
verifyPinForSignature();
|
||||
}
|
||||
|
||||
KeyFormat signKeyFormat = mOpenPgpCapabilities.getFormatForKeyType(KeyType.SIGN);
|
||||
|
||||
byte[] data = prepareData(hash, hashAlgo, signKeyFormat);
|
||||
|
||||
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
|
||||
CommandApdu command = commandFactory.createComputeDigitalSignatureCommand(data);
|
||||
ResponseApdu response = communicate(command);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Failed to sign", response.getSw());
|
||||
}
|
||||
|
||||
if (!mOpenPgpCapabilities.isPw1ValidForMultipleSignatures()) {
|
||||
mPw1ValidatedForSignature = false;
|
||||
}
|
||||
|
||||
return encodeSignature(response.getData(), signKeyFormat);
|
||||
}
|
||||
|
||||
/**
|
||||
* Call INTERNAL AUTHENTICATE command and returns the MPI value
|
||||
*
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
public byte[] calculateAuthenticationSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
verifyPinForOther();
|
||||
}
|
||||
|
||||
KeyFormat authKeyFormat = mOpenPgpCapabilities.getFormatForKeyType(KeyType.AUTH);
|
||||
|
||||
byte[] data = prepareData(hash, hashAlgo, authKeyFormat);
|
||||
|
||||
// Command APDU for INTERNAL AUTHENTICATE (page 55)
|
||||
CommandApdu command = commandFactory.createInternalAuthCommand(data);
|
||||
ResponseApdu response = communicate(command);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Failed to sign", response.getSw());
|
||||
}
|
||||
|
||||
if (!mOpenPgpCapabilities.isPw1ValidForMultipleSignatures()) {
|
||||
mPw1ValidatedForSignature = false;
|
||||
}
|
||||
|
||||
return encodeSignature(response.getData(), authKeyFormat);
|
||||
}
|
||||
|
||||
/**
|
||||
* Transceives APDU
|
||||
* Splits extended APDU into short APDUs and chains them if necessary
|
||||
|
||||
@@ -0,0 +1,180 @@
|
||||
package org.sufficientlysecure.keychain.securitytoken;
|
||||
|
||||
|
||||
import java.io.ByteArrayOutputStream;
|
||||
import java.io.IOException;
|
||||
|
||||
import org.bouncycastle.asn1.ASN1Encodable;
|
||||
import org.bouncycastle.asn1.ASN1Integer;
|
||||
import org.bouncycastle.asn1.ASN1OutputStream;
|
||||
import org.bouncycastle.asn1.DERSequence;
|
||||
import org.bouncycastle.bcpg.HashAlgorithmTags;
|
||||
import org.bouncycastle.util.Arrays;
|
||||
import org.bouncycastle.util.encoders.Hex;
|
||||
import org.sufficientlysecure.keychain.Constants;
|
||||
import org.sufficientlysecure.keychain.util.Log;
|
||||
|
||||
|
||||
public class SecurityTokenPsoSignUseCase {
|
||||
private final SecurityTokenConnection connection;
|
||||
|
||||
public static SecurityTokenPsoSignUseCase create(SecurityTokenConnection connection) {
|
||||
return new SecurityTokenPsoSignUseCase(connection);
|
||||
}
|
||||
|
||||
private SecurityTokenPsoSignUseCase(SecurityTokenConnection connection) {
|
||||
this.connection = connection;
|
||||
}
|
||||
|
||||
private byte[] prepareDsi(byte[] hash, int hashAlgo) throws IOException {
|
||||
byte[] dsi;
|
||||
|
||||
Log.i(Constants.TAG, "Hash: " + hashAlgo);
|
||||
switch (hashAlgo) {
|
||||
case HashAlgorithmTags.SHA1:
|
||||
if (hash.length != 20) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode(
|
||||
"3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
|
||||
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
|
||||
+ "0605" + "2B0E03021A" // OID of SHA1
|
||||
+ "0500" // TLV coding of ZERO
|
||||
+ "0414"), hash); // 0x14 are 20 hash bytes
|
||||
break;
|
||||
case HashAlgorithmTags.RIPEMD160:
|
||||
if (hash.length != 20) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3021300906052B2403020105000414"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA224:
|
||||
if (hash.length != 28) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("302D300D06096086480165030402040500041C"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA256:
|
||||
if (hash.length != 32) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3031300D060960864801650304020105000420"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA384:
|
||||
if (hash.length != 48) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3041300D060960864801650304020205000430"), hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA512:
|
||||
if (hash.length != 64) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
|
||||
}
|
||||
dsi = Arrays.concatenate(Hex.decode("3051300D060960864801650304020305000440"), hash);
|
||||
break;
|
||||
default:
|
||||
throw new IOException("Not supported hash algo!");
|
||||
}
|
||||
return dsi;
|
||||
}
|
||||
|
||||
private byte[] prepareData(byte[] hash, int hashAlgo, KeyFormat keyFormat) throws IOException {
|
||||
byte[] data;
|
||||
switch (keyFormat.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
data = prepareDsi(hash, hashAlgo);
|
||||
break;
|
||||
case ECKeyFormatType:
|
||||
data = hash;
|
||||
break;
|
||||
default:
|
||||
throw new IOException("Not supported key type!");
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
private byte[] encodeSignature(byte[] signature, KeyFormat keyFormat) throws IOException {
|
||||
// Make sure the signature we received is actually the expected number of bytes long!
|
||||
switch (keyFormat.keyFormatType()) {
|
||||
case RSAKeyFormatType:
|
||||
// no encoding necessary
|
||||
int modulusLength = ((RSAKeyFormat) keyFormat).getModulusLength();
|
||||
if (signature.length != (modulusLength / 8)) {
|
||||
throw new IOException("Bad signature length! Expected " + (modulusLength / 8) +
|
||||
" bytes, got " + signature.length);
|
||||
}
|
||||
break;
|
||||
|
||||
case ECKeyFormatType:
|
||||
// "plain" encoding, see https://github.com/open-keychain/open-keychain/issues/2108
|
||||
if (signature.length % 2 != 0) {
|
||||
throw new IOException("Bad signature length!");
|
||||
}
|
||||
final byte[] br = new byte[signature.length / 2];
|
||||
final byte[] bs = new byte[signature.length / 2];
|
||||
for (int i = 0; i < br.length; ++i) {
|
||||
br[i] = signature[i];
|
||||
bs[i] = signature[br.length + i];
|
||||
}
|
||||
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
||||
ASN1OutputStream out = new ASN1OutputStream(baos);
|
||||
out.writeObject(new DERSequence(new ASN1Encodable[] { new ASN1Integer(br), new ASN1Integer(bs) }));
|
||||
out.flush();
|
||||
signature = baos.toByteArray();
|
||||
break;
|
||||
}
|
||||
return signature;
|
||||
}
|
||||
|
||||
/**
|
||||
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
|
||||
*
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
public byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
connection.verifyPinForSignature();
|
||||
|
||||
OpenPgpCapabilities openPgpCapabilities = connection.getOpenPgpCapabilities();
|
||||
KeyFormat signKeyFormat = openPgpCapabilities.getFormatForKeyType(KeyType.SIGN);
|
||||
|
||||
byte[] data = prepareData(hash, hashAlgo, signKeyFormat);
|
||||
|
||||
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
|
||||
CommandApdu command = connection.getCommandFactory().createComputeDigitalSignatureCommand(data);
|
||||
ResponseApdu response = connection.communicate(command);
|
||||
|
||||
connection.maybeInvalidatePw1();
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Failed to sign", response.getSw());
|
||||
}
|
||||
|
||||
return encodeSignature(response.getData(), signKeyFormat);
|
||||
}
|
||||
|
||||
/**
|
||||
* Call INTERNAL AUTHENTICATE command and returns the MPI value
|
||||
*
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
public byte[] calculateAuthenticationSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
connection.verifyPinForOther();
|
||||
|
||||
OpenPgpCapabilities openPgpCapabilities = connection.getOpenPgpCapabilities();
|
||||
KeyFormat authKeyFormat = openPgpCapabilities.getFormatForKeyType(KeyType.AUTH);
|
||||
|
||||
byte[] data = prepareData(hash, hashAlgo, authKeyFormat);
|
||||
|
||||
// Command APDU for INTERNAL AUTHENTICATE (page 55)
|
||||
CommandApdu command = connection.getCommandFactory().createInternalAuthCommand(data);
|
||||
ResponseApdu response = connection.communicate(command);
|
||||
|
||||
if (!response.isSuccess()) {
|
||||
throw new CardException("Failed to sign", response.getSw());
|
||||
}
|
||||
|
||||
return encodeSignature(response.getData(), authKeyFormat);
|
||||
}
|
||||
}
|
||||
@@ -42,6 +42,9 @@ import org.sufficientlysecure.keychain.provider.KeychainContract;
|
||||
import org.sufficientlysecure.keychain.securitytoken.KeyType;
|
||||
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenConnection;
|
||||
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenInfo;
|
||||
import org.sufficientlysecure.keychain.securitytoken.PsoDecryptUseCase;
|
||||
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenPsoSignUseCase;
|
||||
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenChangeKeyUseCase;
|
||||
import org.sufficientlysecure.keychain.service.PassphraseCacheService;
|
||||
import org.sufficientlysecure.keychain.service.input.CryptoInputParcel;
|
||||
import org.sufficientlysecure.keychain.service.input.RequiredInputParcel;
|
||||
@@ -205,9 +208,10 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenActivity {
|
||||
throw new IOException("Couldn't find subkey for key to token operation.");
|
||||
}
|
||||
|
||||
PsoDecryptUseCase psoDecryptUseCase = PsoDecryptUseCase.create(stConnection);
|
||||
for (int i = 0; i < mRequiredInput.mInputData.length; i++) {
|
||||
byte[] encryptedSessionKey = mRequiredInput.mInputData[i];
|
||||
byte[] decryptedSessionKey = stConnection
|
||||
byte[] decryptedSessionKey = psoDecryptUseCase
|
||||
.decryptSessionKey(encryptedSessionKey, publicKeyRing.getPublicKey(tokenKeyId));
|
||||
mInputParcel = mInputParcel.withCryptoData(encryptedSessionKey, decryptedSessionKey);
|
||||
}
|
||||
@@ -223,10 +227,11 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenActivity {
|
||||
|
||||
mInputParcel = mInputParcel.withSignatureTime(mRequiredInput.mSignatureTime);
|
||||
|
||||
SecurityTokenPsoSignUseCase psoSignUseCase = SecurityTokenPsoSignUseCase.create(stConnection);
|
||||
for (int i = 0; i < mRequiredInput.mInputData.length; i++) {
|
||||
byte[] hash = mRequiredInput.mInputData[i];
|
||||
int algo = mRequiredInput.mSignAlgos[i];
|
||||
byte[] signedHash = stConnection.calculateSignature(hash, algo);
|
||||
byte[] signedHash = psoSignUseCase.calculateSignature(hash, algo);
|
||||
mInputParcel = mInputParcel.withCryptoData(hash, signedHash);
|
||||
}
|
||||
break;
|
||||
@@ -239,10 +244,11 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenActivity {
|
||||
throw new IOException(getString(R.string.error_wrong_security_token));
|
||||
}
|
||||
|
||||
SecurityTokenPsoSignUseCase psoSignUseCase = SecurityTokenPsoSignUseCase.create(stConnection);
|
||||
for (int i = 0; i < mRequiredInput.mInputData.length; i++) {
|
||||
byte[] hash = mRequiredInput.mInputData[i];
|
||||
int algo = mRequiredInput.mSignAlgos[i];
|
||||
byte[] signedHash = stConnection.calculateAuthenticationSignature(hash, algo);
|
||||
byte[] signedHash = psoSignUseCase.calculateAuthenticationSignature(hash, algo);
|
||||
mInputParcel = mInputParcel.withCryptoData(hash, signedHash);
|
||||
|
||||
}
|
||||
@@ -282,7 +288,8 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenActivity {
|
||||
throw new IOException("Unable to get cached passphrase!");
|
||||
}
|
||||
|
||||
stConnection.changeKey(key, passphrase, adminPin);
|
||||
SecurityTokenChangeKeyUseCase putKeyUseCase = SecurityTokenChangeKeyUseCase.create(stConnection);
|
||||
putKeyUseCase.changeKey(key, passphrase, adminPin);
|
||||
|
||||
// TODO: Is this really used anywhere?
|
||||
mInputParcel = mInputParcel.withCryptoData(subkeyBytes, tokenSerialNumber);
|
||||
|
||||
@@ -177,7 +177,8 @@ public class SecurityTokenConnectionTest {
|
||||
"e2702d93e9316b6176726121dd29c8a8b75ec19e1deb09e4cc3b95b054541d", "9000");
|
||||
|
||||
|
||||
securityTokenConnection.putKey(KeyType.SIGN, signKey, new Passphrase("123456"), new Passphrase("12345678"));
|
||||
SecurityTokenChangeKeyUseCase changeKeyUseCase = SecurityTokenChangeKeyUseCase.create(securityTokenConnection);
|
||||
changeKeyUseCase.putKey(KeyType.SIGN, signKey, new Passphrase("123456"), new Passphrase("12345678"));
|
||||
|
||||
|
||||
verifyDialog();
|
||||
|
||||
Reference in New Issue
Block a user