|
|
|
|
@@ -35,16 +35,19 @@ import android.os.AsyncTask;
|
|
|
|
|
import android.os.Bundle;
|
|
|
|
|
|
|
|
|
|
import nordpol.Apdu;
|
|
|
|
|
import nordpol.IsoCard;
|
|
|
|
|
import nordpol.android.TagDispatcher;
|
|
|
|
|
import nordpol.android.AndroidCard;
|
|
|
|
|
import nordpol.android.OnDiscoveredTagListener;
|
|
|
|
|
import nordpol.IsoCard;
|
|
|
|
|
|
|
|
|
|
import org.bouncycastle.bcpg.HashAlgorithmTags;
|
|
|
|
|
import org.bouncycastle.util.Arrays;
|
|
|
|
|
import org.bouncycastle.util.encoders.Hex;
|
|
|
|
|
import org.sufficientlysecure.keychain.Constants;
|
|
|
|
|
import org.sufficientlysecure.keychain.R;
|
|
|
|
|
import org.sufficientlysecure.keychain.javacard.BaseJavacardDevice;
|
|
|
|
|
import org.sufficientlysecure.keychain.javacard.JavacardDevice;
|
|
|
|
|
import org.sufficientlysecure.keychain.javacard.NfcTransport;
|
|
|
|
|
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
|
|
|
|
|
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
|
|
|
|
|
import org.sufficientlysecure.keychain.pgp.exception.PgpKeyNotFoundException;
|
|
|
|
|
@@ -72,21 +75,19 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
|
|
|
|
|
public static final String EXTRA_TAG_HANDLING_ENABLED = "tag_handling_enabled";
|
|
|
|
|
|
|
|
|
|
// Fidesmo constants
|
|
|
|
|
private static final String FIDESMO_APPS_AID_PREFIX = "A000000617";
|
|
|
|
|
private static final String FIDESMO_APP_PACKAGE = "com.fidesmo.sec.android";
|
|
|
|
|
|
|
|
|
|
protected Passphrase mPin;
|
|
|
|
|
protected Passphrase mAdminPin;
|
|
|
|
|
protected boolean mPw1ValidForMultipleSignatures;
|
|
|
|
|
protected boolean mPw1ValidatedForSignature;
|
|
|
|
|
protected boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
|
|
|
|
|
protected boolean mPw3Validated;
|
|
|
|
|
protected TagDispatcher mTagDispatcher;
|
|
|
|
|
private IsoCard mIsoCard;
|
|
|
|
|
private boolean mTagHandlingEnabled;
|
|
|
|
|
//protected Passphrase mPin;
|
|
|
|
|
//protected Passphrase mAdminPin;
|
|
|
|
|
//protected boolean mPw1ValidForMultipleSignatures;
|
|
|
|
|
//protected boolean mPw1ValidatedForSignature;
|
|
|
|
|
//protected boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
|
|
|
|
|
//protected boolean mPw3Validated;
|
|
|
|
|
|
|
|
|
|
private static final int TIMEOUT = 100000;
|
|
|
|
|
public JavacardDevice mJavacardDevice;
|
|
|
|
|
protected TagDispatcher mTagDispatcher;
|
|
|
|
|
// private IsoCard mIsoCard;
|
|
|
|
|
private boolean mTagHandlingEnabled;
|
|
|
|
|
|
|
|
|
|
private byte[] mNfcFingerprints;
|
|
|
|
|
private String mNfcUserId;
|
|
|
|
|
@@ -102,9 +103,9 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
* Override to implement NFC operations (background thread)
|
|
|
|
|
*/
|
|
|
|
|
protected void doNfcInBackground() throws IOException {
|
|
|
|
|
mNfcFingerprints = nfcGetFingerprints();
|
|
|
|
|
mNfcUserId = nfcGetUserId();
|
|
|
|
|
mNfcAid = nfcGetAid();
|
|
|
|
|
mNfcFingerprints = mJavacardDevice.getFingerprints();
|
|
|
|
|
mNfcUserId = mJavacardDevice.getUserId();
|
|
|
|
|
mNfcAid = mJavacardDevice.getAid();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
@@ -316,7 +317,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
}
|
|
|
|
|
// 6A82 app not installed on security token!
|
|
|
|
|
case 0x6A82: {
|
|
|
|
|
if (isFidesmoToken()) {
|
|
|
|
|
if (mJavacardDevice.isFidesmoToken()) {
|
|
|
|
|
// Check if the Fidesmo app is installed
|
|
|
|
|
if (isAndroidAppInstalled(FIDESMO_APP_PACKAGE)) {
|
|
|
|
|
promptFidesmoPgpInstall();
|
|
|
|
|
@@ -363,7 +364,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
Passphrase passphrase = PassphraseCacheService.getCachedPassphrase(this,
|
|
|
|
|
requiredInput.getMasterKeyId(), requiredInput.getSubKeyId());
|
|
|
|
|
if (passphrase != null) {
|
|
|
|
|
mPin = passphrase;
|
|
|
|
|
mJavacardDevice.setPin(passphrase);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@@ -388,7 +389,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
CryptoInputParcel input = data.getParcelableExtra(PassphraseDialogActivity.RESULT_CRYPTO_INPUT);
|
|
|
|
|
mPin = input.getPassphrase();
|
|
|
|
|
mJavacardDevice.setPin(input.getPassphrase());
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
default:
|
|
|
|
|
@@ -413,573 +414,19 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
protected void handleTagDiscovered(Tag tag) throws IOException {
|
|
|
|
|
|
|
|
|
|
// Connect to the detected tag, setting a couple of settings
|
|
|
|
|
mIsoCard = AndroidCard.get(tag);
|
|
|
|
|
if (mIsoCard == null) {
|
|
|
|
|
IsoCard isoCard = AndroidCard.get(tag);
|
|
|
|
|
if (isoCard == null) {
|
|
|
|
|
throw new IsoDepNotSupportedException("Tag does not support ISO-DEP (ISO 14443-4)");
|
|
|
|
|
}
|
|
|
|
|
mIsoCard.setTimeout(TIMEOUT); // timeout is set to 100 seconds to avoid cancellation during calculation
|
|
|
|
|
mIsoCard.connect();
|
|
|
|
|
|
|
|
|
|
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
|
|
|
|
|
// See specification, page 51
|
|
|
|
|
String accepted = "9000";
|
|
|
|
|
|
|
|
|
|
// Command APDU (page 51) for SELECT FILE command (page 29)
|
|
|
|
|
String opening =
|
|
|
|
|
"00" // CLA
|
|
|
|
|
+ "A4" // INS
|
|
|
|
|
+ "04" // P1
|
|
|
|
|
+ "00" // P2
|
|
|
|
|
+ "06" // Lc (number of bytes)
|
|
|
|
|
+ "D27600012401" // Data (6 bytes)
|
|
|
|
|
+ "00"; // Le
|
|
|
|
|
String response = nfcCommunicate(opening); // activate connection
|
|
|
|
|
if ( ! response.endsWith(accepted) ) {
|
|
|
|
|
throw new CardException("Initialization failed!", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
byte[] pwStatusBytes = nfcGetPwStatusBytes();
|
|
|
|
|
mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
|
|
|
|
|
mPw1ValidatedForSignature = false;
|
|
|
|
|
mPw1ValidatedForDecrypt = false;
|
|
|
|
|
mPw3Validated = false;
|
|
|
|
|
mJavacardDevice = new BaseJavacardDevice(new NfcTransport(isoCard));
|
|
|
|
|
mJavacardDevice.connectToDevice();
|
|
|
|
|
|
|
|
|
|
doNfcInBackground();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public boolean isNfcConnected() {
|
|
|
|
|
return mIsoCard.isConnected();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Return the key id from application specific data stored on tag, or null
|
|
|
|
|
* if it doesn't exist.
|
|
|
|
|
*
|
|
|
|
|
* @param idx Index of the key to return the fingerprint from.
|
|
|
|
|
* @return The long key id of the requested key, or null if not found.
|
|
|
|
|
*/
|
|
|
|
|
public Long nfcGetKeyId(int idx) throws IOException {
|
|
|
|
|
byte[] fp = nfcGetMasterKeyFingerprint(idx);
|
|
|
|
|
if (fp == null) {
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
ByteBuffer buf = ByteBuffer.wrap(fp);
|
|
|
|
|
// skip first 12 bytes of the fingerprint
|
|
|
|
|
buf.position(12);
|
|
|
|
|
// the last eight bytes are the key id (big endian, which is default order in ByteBuffer)
|
|
|
|
|
return buf.getLong();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Return fingerprints of all keys from application specific data stored
|
|
|
|
|
* on tag, or null if data not available.
|
|
|
|
|
*
|
|
|
|
|
* @return The fingerprints of all subkeys in a contiguous byte array.
|
|
|
|
|
*/
|
|
|
|
|
public byte[] nfcGetFingerprints() throws IOException {
|
|
|
|
|
String data = "00CA006E00";
|
|
|
|
|
byte[] buf = mIsoCard.transceive(Hex.decode(data));
|
|
|
|
|
|
|
|
|
|
Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
|
|
|
|
|
Log.d(Constants.TAG, "nfcGetFingerprints() Iso7816TLV tlv data:\n" + tlv.prettyPrint());
|
|
|
|
|
|
|
|
|
|
Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
|
|
|
|
|
if (fptlv == null) {
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return fptlv.mV;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
|
|
|
|
|
*
|
|
|
|
|
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
|
|
|
|
|
*/
|
|
|
|
|
public byte[] nfcGetPwStatusBytes() throws IOException {
|
|
|
|
|
String data = "00CA00C400";
|
|
|
|
|
return mIsoCard.transceive(Hex.decode(data));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Return the fingerprint from application specific data stored on tag, or
|
|
|
|
|
* null if it doesn't exist.
|
|
|
|
|
*
|
|
|
|
|
* @param idx Index of the key to return the fingerprint from.
|
|
|
|
|
* @return The fingerprint of the requested key, or null if not found.
|
|
|
|
|
*/
|
|
|
|
|
public byte[] nfcGetMasterKeyFingerprint(int idx) throws IOException {
|
|
|
|
|
byte[] data = nfcGetFingerprints();
|
|
|
|
|
if (data == null) {
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// return the master key fingerprint
|
|
|
|
|
ByteBuffer fpbuf = ByteBuffer.wrap(data);
|
|
|
|
|
byte[] fp = new byte[20];
|
|
|
|
|
fpbuf.position(idx * 20);
|
|
|
|
|
fpbuf.get(fp, 0, 20);
|
|
|
|
|
|
|
|
|
|
return fp;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public byte[] nfcGetAid() throws IOException {
|
|
|
|
|
String info = "00CA004F00";
|
|
|
|
|
return mIsoCard.transceive(Hex.decode(info));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public String nfcGetUserId() throws IOException {
|
|
|
|
|
String info = "00CA006500";
|
|
|
|
|
return getHolderName(nfcCommunicate(info));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
|
|
|
|
|
*
|
|
|
|
|
* @param hash the hash for signing
|
|
|
|
|
* @return a big integer representing the MPI for the given hash
|
|
|
|
|
*/
|
|
|
|
|
public byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException {
|
|
|
|
|
if (!mPw1ValidatedForSignature) {
|
|
|
|
|
nfcVerifyPin(0x81); // (Verify PW1 with mode 81 for signing)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// dsi, including Lc
|
|
|
|
|
String dsi;
|
|
|
|
|
|
|
|
|
|
Log.i(Constants.TAG, "Hash: " + hashAlgo);
|
|
|
|
|
switch (hashAlgo) {
|
|
|
|
|
case HashAlgorithmTags.SHA1:
|
|
|
|
|
if (hash.length != 20) {
|
|
|
|
|
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
|
|
|
|
|
}
|
|
|
|
|
dsi = "23" // Lc
|
|
|
|
|
+ "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
|
|
|
|
|
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
|
|
|
|
|
+ "0605" + "2B0E03021A" // OID of SHA1
|
|
|
|
|
+ "0500" // TLV coding of ZERO
|
|
|
|
|
+ "0414" + getHex(hash); // 0x14 are 20 hash bytes
|
|
|
|
|
break;
|
|
|
|
|
case HashAlgorithmTags.RIPEMD160:
|
|
|
|
|
if (hash.length != 20) {
|
|
|
|
|
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
|
|
|
|
|
}
|
|
|
|
|
dsi = "233021300906052B2403020105000414" + getHex(hash);
|
|
|
|
|
break;
|
|
|
|
|
case HashAlgorithmTags.SHA224:
|
|
|
|
|
if (hash.length != 28) {
|
|
|
|
|
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
|
|
|
|
|
}
|
|
|
|
|
dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
|
|
|
|
|
break;
|
|
|
|
|
case HashAlgorithmTags.SHA256:
|
|
|
|
|
if (hash.length != 32) {
|
|
|
|
|
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
|
|
|
|
|
}
|
|
|
|
|
dsi = "333031300D060960864801650304020105000420" + getHex(hash);
|
|
|
|
|
break;
|
|
|
|
|
case HashAlgorithmTags.SHA384:
|
|
|
|
|
if (hash.length != 48) {
|
|
|
|
|
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
|
|
|
|
|
}
|
|
|
|
|
dsi = "433041300D060960864801650304020205000430" + getHex(hash);
|
|
|
|
|
break;
|
|
|
|
|
case HashAlgorithmTags.SHA512:
|
|
|
|
|
if (hash.length != 64) {
|
|
|
|
|
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
|
|
|
|
|
}
|
|
|
|
|
dsi = "533051300D060960864801650304020305000440" + getHex(hash);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
throw new IOException("Not supported hash algo!");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
|
|
|
|
|
String apdu =
|
|
|
|
|
"002A9E9A" // CLA, INS, P1, P2
|
|
|
|
|
+ dsi // digital signature input
|
|
|
|
|
+ "00"; // Le
|
|
|
|
|
|
|
|
|
|
String response = nfcCommunicate(apdu);
|
|
|
|
|
|
|
|
|
|
// split up response into signature and status
|
|
|
|
|
String status = response.substring(response.length()-4);
|
|
|
|
|
String signature = response.substring(0, response.length() - 4);
|
|
|
|
|
|
|
|
|
|
// while we are getting 0x61 status codes, retrieve more data
|
|
|
|
|
while (status.substring(0, 2).equals("61")) {
|
|
|
|
|
Log.d(Constants.TAG, "requesting more data, status " + status);
|
|
|
|
|
// Send GET RESPONSE command
|
|
|
|
|
response = nfcCommunicate("00C00000" + status.substring(2));
|
|
|
|
|
status = response.substring(response.length()-4);
|
|
|
|
|
signature += response.substring(0, response.length()-4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Log.d(Constants.TAG, "final response:" + status);
|
|
|
|
|
|
|
|
|
|
if (!mPw1ValidForMultipleSignatures) {
|
|
|
|
|
mPw1ValidatedForSignature = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ( ! "9000".equals(status)) {
|
|
|
|
|
throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Make sure the signature we received is actually the expected number of bytes long!
|
|
|
|
|
if (signature.length() != 256 && signature.length() != 512) {
|
|
|
|
|
throw new IOException("Bad signature length! Expected 128 or 256 bytes, got " + signature.length() / 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return Hex.decode(signature);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Call DECIPHER command
|
|
|
|
|
*
|
|
|
|
|
* @param encryptedSessionKey the encoded session key
|
|
|
|
|
* @return the decoded session key
|
|
|
|
|
*/
|
|
|
|
|
public byte[] nfcDecryptSessionKey(byte[] encryptedSessionKey) throws IOException {
|
|
|
|
|
if (!mPw1ValidatedForDecrypt) {
|
|
|
|
|
nfcVerifyPin(0x82); // (Verify PW1 with mode 82 for decryption)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
String firstApdu = "102a8086fe";
|
|
|
|
|
String secondApdu = "002a808603";
|
|
|
|
|
String le = "00";
|
|
|
|
|
|
|
|
|
|
byte[] one = new byte[254];
|
|
|
|
|
// leave out first byte:
|
|
|
|
|
System.arraycopy(encryptedSessionKey, 1, one, 0, one.length);
|
|
|
|
|
|
|
|
|
|
byte[] two = new byte[encryptedSessionKey.length - 1 - one.length];
|
|
|
|
|
for (int i = 0; i < two.length; i++) {
|
|
|
|
|
two[i] = encryptedSessionKey[i + one.length + 1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nfcCommunicate(firstApdu + getHex(one));
|
|
|
|
|
String second = nfcCommunicate(secondApdu + getHex(two) + le);
|
|
|
|
|
|
|
|
|
|
String decryptedSessionKey = getDataField(second);
|
|
|
|
|
|
|
|
|
|
return Hex.decode(decryptedSessionKey);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Verifies the user's PW1 or PW3 with the appropriate mode.
|
|
|
|
|
*
|
|
|
|
|
* @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
|
|
|
|
|
* For PW3 (Admin PIN), mode is 0x83.
|
|
|
|
|
*/
|
|
|
|
|
public void nfcVerifyPin(int mode) throws IOException {
|
|
|
|
|
if (mPin != null || mode == 0x83) {
|
|
|
|
|
|
|
|
|
|
byte[] pin;
|
|
|
|
|
if (mode == 0x83) {
|
|
|
|
|
pin = mAdminPin.toStringUnsafe().getBytes();
|
|
|
|
|
} else {
|
|
|
|
|
pin = mPin.toStringUnsafe().getBytes();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
|
|
|
|
|
// See specification, page 51
|
|
|
|
|
String accepted = "9000";
|
|
|
|
|
String response = nfcTryPin(mode, pin); // login
|
|
|
|
|
if (!response.equals(accepted)) {
|
|
|
|
|
throw new CardException("Bad PIN!", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (mode == 0x81) {
|
|
|
|
|
mPw1ValidatedForSignature = true;
|
|
|
|
|
} else if (mode == 0x82) {
|
|
|
|
|
mPw1ValidatedForDecrypt = true;
|
|
|
|
|
} else if (mode == 0x83) {
|
|
|
|
|
mPw3Validated = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Resets security token, which deletes all keys and data objects.
|
|
|
|
|
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
|
|
|
|
|
* Afterwards, the token is reactivated.
|
|
|
|
|
*/
|
|
|
|
|
public void nfcReset() throws IOException {
|
|
|
|
|
String accepted = "9000";
|
|
|
|
|
|
|
|
|
|
// try wrong PIN 4 times until counter goes to C0
|
|
|
|
|
byte[] pin = "XXXXXX".getBytes();
|
|
|
|
|
for (int i = 0; i <= 4; i++) {
|
|
|
|
|
String response = nfcTryPin(0x81, pin);
|
|
|
|
|
if (response.equals(accepted)) { // Should NOT accept!
|
|
|
|
|
throw new CardException("Should never happen, XXXXXX has been accepted!", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// try wrong Admin PIN 4 times until counter goes to C0
|
|
|
|
|
byte[] adminPin = "XXXXXXXX".getBytes();
|
|
|
|
|
for (int i = 0; i <= 4; i++) {
|
|
|
|
|
String response = nfcTryPin(0x83, adminPin);
|
|
|
|
|
if (response.equals(accepted)) { // Should NOT accept!
|
|
|
|
|
throw new CardException("Should never happen, XXXXXXXX has been accepted", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// reactivate token!
|
|
|
|
|
String reactivate1 = "00" + "e6" + "00" + "00";
|
|
|
|
|
String reactivate2 = "00" + "44" + "00" + "00";
|
|
|
|
|
String response1 = nfcCommunicate(reactivate1);
|
|
|
|
|
String response2 = nfcCommunicate(reactivate2);
|
|
|
|
|
if (!response1.equals(accepted) || !response2.equals(accepted)) {
|
|
|
|
|
throw new CardException("Reactivating failed!", parseCardStatus(response1));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private String nfcTryPin(int mode, byte[] pin) throws IOException {
|
|
|
|
|
// Command APDU for VERIFY command (page 32)
|
|
|
|
|
String login =
|
|
|
|
|
"00" // CLA
|
|
|
|
|
+ "20" // INS
|
|
|
|
|
+ "00" // P1
|
|
|
|
|
+ String.format("%02x", mode) // P2
|
|
|
|
|
+ String.format("%02x", pin.length) // Lc
|
|
|
|
|
+ Hex.toHexString(pin);
|
|
|
|
|
|
|
|
|
|
return nfcCommunicate(login);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
|
|
|
|
|
* conformance to the token's requirements for key length.
|
|
|
|
|
*
|
|
|
|
|
* @param pw For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
|
|
|
|
|
* @param newPin The new PW1 or PW3.
|
|
|
|
|
*/
|
|
|
|
|
public void nfcModifyPin(int pw, byte[] newPin) throws IOException {
|
|
|
|
|
final int MAX_PW1_LENGTH_INDEX = 1;
|
|
|
|
|
final int MAX_PW3_LENGTH_INDEX = 3;
|
|
|
|
|
|
|
|
|
|
byte[] pwStatusBytes = nfcGetPwStatusBytes();
|
|
|
|
|
|
|
|
|
|
if (pw == 0x81) {
|
|
|
|
|
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
|
|
|
|
|
throw new IOException("Invalid PIN length");
|
|
|
|
|
}
|
|
|
|
|
} else if (pw == 0x83) {
|
|
|
|
|
if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
|
|
|
|
|
throw new IOException("Invalid PIN length");
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
throw new IOException("Invalid PW index for modify PIN operation");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
byte[] pin;
|
|
|
|
|
if (pw == 0x83) {
|
|
|
|
|
pin = mAdminPin.toStringUnsafe().getBytes();
|
|
|
|
|
} else {
|
|
|
|
|
pin = mPin.toStringUnsafe().getBytes();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Command APDU for CHANGE REFERENCE DATA command (page 32)
|
|
|
|
|
String changeReferenceDataApdu = "00" // CLA
|
|
|
|
|
+ "24" // INS
|
|
|
|
|
+ "00" // P1
|
|
|
|
|
+ String.format("%02x", pw) // P2
|
|
|
|
|
+ String.format("%02x", pin.length + newPin.length) // Lc
|
|
|
|
|
+ getHex(pin)
|
|
|
|
|
+ getHex(newPin);
|
|
|
|
|
String response = nfcCommunicate(changeReferenceDataApdu); // change PIN
|
|
|
|
|
if (!response.equals("9000")) {
|
|
|
|
|
throw new CardException("Failed to change PIN", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
|
|
|
|
|
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
|
|
|
|
|
* (0x7F21) can exceed this length.
|
|
|
|
|
*
|
|
|
|
|
* @param dataObject The data object to be stored.
|
|
|
|
|
* @param data The data to store in the object
|
|
|
|
|
*/
|
|
|
|
|
public void nfcPutData(int dataObject, byte[] data) throws IOException {
|
|
|
|
|
if (data.length > 254) {
|
|
|
|
|
throw new IOException("Cannot PUT DATA with length > 254");
|
|
|
|
|
}
|
|
|
|
|
if (dataObject == 0x0101 || dataObject == 0x0103) {
|
|
|
|
|
if (!mPw1ValidatedForDecrypt) {
|
|
|
|
|
nfcVerifyPin(0x82); // (Verify PW1 for non-signing operations)
|
|
|
|
|
}
|
|
|
|
|
} else if (!mPw3Validated) {
|
|
|
|
|
nfcVerifyPin(0x83); // (Verify PW3)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
String putDataApdu = "00" // CLA
|
|
|
|
|
+ "DA" // INS
|
|
|
|
|
+ String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
|
|
|
|
|
+ String.format("%02x", dataObject & 0xFF) // P2
|
|
|
|
|
+ String.format("%02x", data.length) // Lc
|
|
|
|
|
+ getHex(data);
|
|
|
|
|
|
|
|
|
|
String response = nfcCommunicate(putDataApdu); // put data
|
|
|
|
|
if (!response.equals("9000")) {
|
|
|
|
|
throw new CardException("Failed to put data.", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Puts a key on the token in the given slot.
|
|
|
|
|
*
|
|
|
|
|
* @param slot The slot on the token where the key should be stored:
|
|
|
|
|
* 0xB6: Signature Key
|
|
|
|
|
* 0xB8: Decipherment Key
|
|
|
|
|
* 0xA4: Authentication Key
|
|
|
|
|
*/
|
|
|
|
|
public void nfcPutKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
|
|
|
|
|
throws IOException {
|
|
|
|
|
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
|
|
|
|
|
throw new IOException("Invalid key slot");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
RSAPrivateCrtKey crtSecretKey;
|
|
|
|
|
try {
|
|
|
|
|
secretKey.unlock(passphrase);
|
|
|
|
|
crtSecretKey = secretKey.getCrtSecretKey();
|
|
|
|
|
} catch (PgpGeneralException e) {
|
|
|
|
|
throw new IOException(e.getMessage());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Shouldn't happen; the UI should block the user from getting an incompatible key this far.
|
|
|
|
|
if (crtSecretKey.getModulus().bitLength() > 2048) {
|
|
|
|
|
throw new IOException("Key too large to export to Security Token.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
|
|
|
|
|
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
|
|
|
|
|
throw new IOException("Invalid public exponent for smart Security Token.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!mPw3Validated) {
|
|
|
|
|
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
byte[] header= Hex.decode(
|
|
|
|
|
"4D82" + "03A2" // Extended header list 4D82, length of 930 bytes. (page 23)
|
|
|
|
|
+ String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
|
|
|
|
|
+ "7F48" + "15" // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
|
|
|
|
|
+ "9103" // Public modulus, length 3
|
|
|
|
|
+ "928180" // Prime P, length 128
|
|
|
|
|
+ "938180" // Prime Q, length 128
|
|
|
|
|
+ "948180" // Coefficient (1/q mod p), length 128
|
|
|
|
|
+ "958180" // Prime exponent P (d mod (p - 1)), length 128
|
|
|
|
|
+ "968180" // Prime exponent Q (d mod (1 - 1)), length 128
|
|
|
|
|
+ "97820100" // Modulus, length 256, last item in private key template
|
|
|
|
|
+ "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
|
|
|
|
|
byte[] dataToSend = new byte[934];
|
|
|
|
|
byte[] currentKeyObject;
|
|
|
|
|
int offset = 0;
|
|
|
|
|
|
|
|
|
|
System.arraycopy(header, 0, dataToSend, offset, header.length);
|
|
|
|
|
offset += header.length;
|
|
|
|
|
currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
|
|
|
|
|
offset += 3;
|
|
|
|
|
// NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
|
|
|
|
|
// in the array to represent sign, so we take care to set the offset to 1 if necessary.
|
|
|
|
|
currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
|
|
|
|
Arrays.fill(currentKeyObject, (byte)0);
|
|
|
|
|
offset += 128;
|
|
|
|
|
currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
|
|
|
|
Arrays.fill(currentKeyObject, (byte)0);
|
|
|
|
|
offset += 128;
|
|
|
|
|
currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
|
|
|
|
Arrays.fill(currentKeyObject, (byte)0);
|
|
|
|
|
offset += 128;
|
|
|
|
|
currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
|
|
|
|
Arrays.fill(currentKeyObject, (byte)0);
|
|
|
|
|
offset += 128;
|
|
|
|
|
currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
|
|
|
|
Arrays.fill(currentKeyObject, (byte)0);
|
|
|
|
|
offset += 128;
|
|
|
|
|
currentKeyObject = crtSecretKey.getModulus().toByteArray();
|
|
|
|
|
System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);
|
|
|
|
|
|
|
|
|
|
String putKeyCommand = "10DB3FFF";
|
|
|
|
|
String lastPutKeyCommand = "00DB3FFF";
|
|
|
|
|
|
|
|
|
|
// Now we're ready to communicate with the token.
|
|
|
|
|
offset = 0;
|
|
|
|
|
String response;
|
|
|
|
|
while(offset < dataToSend.length) {
|
|
|
|
|
int dataRemaining = dataToSend.length - offset;
|
|
|
|
|
if (dataRemaining > 254) {
|
|
|
|
|
response = nfcCommunicate(
|
|
|
|
|
putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
|
|
|
|
|
);
|
|
|
|
|
offset += 254;
|
|
|
|
|
} else {
|
|
|
|
|
int length = dataToSend.length - offset;
|
|
|
|
|
response = nfcCommunicate(
|
|
|
|
|
lastPutKeyCommand + String.format("%02x", length)
|
|
|
|
|
+ Hex.toHexString(dataToSend, offset, length));
|
|
|
|
|
offset += length;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!response.endsWith("9000")) {
|
|
|
|
|
throw new CardException("Key export to Security Token failed", parseCardStatus(response));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Clear array with secret data before we return.
|
|
|
|
|
Arrays.fill(dataToSend, (byte) 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
|
|
|
|
|
* this command also has the effect of resetting the digital signature counter.
|
|
|
|
|
* NOTE: This does not set the key fingerprint data object! After calling this command, you
|
|
|
|
|
* must construct a public key packet using the returned public key data objects, compute the
|
|
|
|
|
* key fingerprint, and store it on the card using: nfcPutData(0xC8, key.getFingerprint())
|
|
|
|
|
*
|
|
|
|
|
* @param slot The slot on the card where the key should be generated:
|
|
|
|
|
* 0xB6: Signature Key
|
|
|
|
|
* 0xB8: Decipherment Key
|
|
|
|
|
* 0xA4: Authentication Key
|
|
|
|
|
* @return the public key data objects, in TLV format. For RSA this will be the public modulus
|
|
|
|
|
* (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
|
|
|
|
|
*/
|
|
|
|
|
public byte[] nfcGenerateKey(int slot) throws IOException {
|
|
|
|
|
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
|
|
|
|
|
throw new IOException("Invalid key slot");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!mPw3Validated) {
|
|
|
|
|
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
String generateKeyApdu = "0047800002" + String.format("%02x", slot) + "0000";
|
|
|
|
|
String getResponseApdu = "00C00000";
|
|
|
|
|
|
|
|
|
|
String first = nfcCommunicate(generateKeyApdu);
|
|
|
|
|
String second = nfcCommunicate(getResponseApdu);
|
|
|
|
|
|
|
|
|
|
if (!second.endsWith("9000")) {
|
|
|
|
|
throw new IOException("On-card key generation failed");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
String publicKeyData = getDataField(first) + getDataField(second);
|
|
|
|
|
|
|
|
|
|
Log.d(Constants.TAG, "Public Key Data Objects: " + publicKeyData);
|
|
|
|
|
|
|
|
|
|
return Hex.decode(publicKeyData);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Transceive data via NFC encoded as Hex
|
|
|
|
|
*/
|
|
|
|
|
public String nfcCommunicate(String apdu) throws IOException {
|
|
|
|
|
return getHex(mIsoCard.transceive(Hex.decode(apdu)));
|
|
|
|
|
return mJavacardDevice.isConnected();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
@@ -1020,10 +467,6 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private String getDataField(String output) {
|
|
|
|
|
return output.substring(0, output.length() - 4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static String getHex(byte[] raw) {
|
|
|
|
|
return new String(Hex.encode(raw));
|
|
|
|
|
}
|
|
|
|
|
@@ -1050,21 +493,6 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private boolean isFidesmoToken() {
|
|
|
|
|
if (isNfcConnected()) { // Check if we can still talk to the card
|
|
|
|
|
try {
|
|
|
|
|
// By trying to select any apps that have the Fidesmo AID prefix we can
|
|
|
|
|
// see if it is a Fidesmo device or not
|
|
|
|
|
byte[] mSelectResponse = mIsoCard.transceive(Apdu.select(FIDESMO_APPS_AID_PREFIX));
|
|
|
|
|
// Compare the status returned by our select with the OK status code
|
|
|
|
|
return Apdu.hasStatus(mSelectResponse, Apdu.OK_APDU);
|
|
|
|
|
} catch (IOException e) {
|
|
|
|
|
Log.e(Constants.TAG, "Card communication failed!", e);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Ask user if she wants to install PGP onto her Fidesmo token
|
|
|
|
|
*/
|
|
|
|
|
|