OTG: update methods
This commit is contained in:
@@ -15,7 +15,12 @@ import java.math.BigInteger;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.security.interfaces.RSAPrivateCrtKey;
|
||||
|
||||
import nordpol.Apdu;
|
||||
|
||||
public class BaseJavacardDevice implements JavacardDevice {
|
||||
// Fidesmo constants
|
||||
private static final String FIDESMO_APPS_AID_PREFIX = "A000000617";
|
||||
|
||||
private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
private final Transport mTransport;
|
||||
|
||||
@@ -68,9 +73,9 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
keyType.toString()));
|
||||
}
|
||||
|
||||
nfcPutKey(keyType.getmSlot(), secretKey, passphrase);
|
||||
nfcPutData(keyType.getmFingerprintObjectId(), secretKey.getFingerprint());
|
||||
nfcPutData(keyType.getTimestampObjectId(), timestampBytes);
|
||||
putKey(keyType.getmSlot(), secretKey, passphrase);
|
||||
putData(keyType.getmFingerprintObjectId(), secretKey.getFingerprint());
|
||||
putData(keyType.getTimestampObjectId(), timestampBytes);
|
||||
}
|
||||
|
||||
public boolean containsKey(KeyType keyType) throws IOException {
|
||||
@@ -78,9 +83,10 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
}
|
||||
|
||||
public boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
|
||||
return java.util.Arrays.equals(nfcGetFingerprint(keyType.getIdx()), fingerprint);
|
||||
return java.util.Arrays.equals(getMasterKeyFingerprint(keyType.getIdx()), fingerprint);
|
||||
}
|
||||
|
||||
// METHOD UPDATED OK
|
||||
public void connectToDevice() throws IOException {
|
||||
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
|
||||
// See specification, page 51
|
||||
@@ -127,53 +133,61 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
|
||||
/**
|
||||
* Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
|
||||
* conformance to the card's requirements for key length.
|
||||
* conformance to the token's requirements for key length.
|
||||
*
|
||||
* @param pinType For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
|
||||
* @param newPin The new PW1 or PW3.
|
||||
* @param pw For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
|
||||
* @param newPin The new PW1 or PW3.
|
||||
*/
|
||||
public void nfcModifyPIN(PinType pinType, byte[] newPin) throws IOException {
|
||||
// METHOD UPDATED[OK]
|
||||
public void modifyPin(int pw, byte[] newPin) throws IOException {
|
||||
final int MAX_PW1_LENGTH_INDEX = 1;
|
||||
final int MAX_PW3_LENGTH_INDEX = 3;
|
||||
|
||||
byte[] pwStatusBytes = nfcGetPwStatusBytes();
|
||||
byte[] oldPin;
|
||||
|
||||
if (pinType == PinType.BASIC) {
|
||||
if (pw == 0x81) {
|
||||
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
|
||||
throw new IOException("Invalid PIN length");
|
||||
}
|
||||
oldPin = mPin.toStringUnsafe().getBytes();
|
||||
} else {
|
||||
} else if (pw == 0x83) {
|
||||
if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
|
||||
throw new IOException("Invalid PIN length");
|
||||
}
|
||||
oldPin = mAdminPin.toStringUnsafe().getBytes();
|
||||
} else {
|
||||
throw new IOException("Invalid PW index for modify PIN operation");
|
||||
}
|
||||
|
||||
byte[] pin;
|
||||
if (pw == 0x83) {
|
||||
pin = mAdminPin.toStringUnsafe().getBytes();
|
||||
} else {
|
||||
pin = mPin.toStringUnsafe().getBytes();
|
||||
}
|
||||
|
||||
// Command APDU for CHANGE REFERENCE DATA command (page 32)
|
||||
String changeReferenceDataApdu = "00" // CLA
|
||||
+ "24" // INS
|
||||
+ "00" // P1
|
||||
+ String.format("%02x", pinType.getmMode()) // P2
|
||||
+ String.format("%02x", oldPin.length + newPin.length) // Lc
|
||||
+ getHex(oldPin)
|
||||
+ String.format("%02x", pw) // P2
|
||||
+ String.format("%02x", pin.length + newPin.length) // Lc
|
||||
+ getHex(pin)
|
||||
+ getHex(newPin);
|
||||
String response = nfcCommunicate(changeReferenceDataApdu); // change PIN
|
||||
if (!response.equals("9000")) {
|
||||
throw new PinException("Failed to change PIN", parseCardStatus(response));
|
||||
throw new CardException("Failed to change PIN", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calls to calculate the signature and returns the MPI value
|
||||
* Call DECIPHER command
|
||||
*
|
||||
* @param encryptedSessionKey the encoded session key
|
||||
* @return the decoded session key
|
||||
*/
|
||||
// METHOD UPDATED [OK]
|
||||
public byte[] decryptSessionKey(byte[] encryptedSessionKey) throws IOException {
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
nfcVerifyPIN(0x82); // (Verify PW1 with mode 82 for decryption)
|
||||
nfcVerifyPin(0x82); // (Verify PW1 with mode 82 for decryption)
|
||||
}
|
||||
|
||||
String firstApdu = "102a8086fe";
|
||||
@@ -189,12 +203,10 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
two[i] = encryptedSessionKey[i + one.length + 1];
|
||||
}
|
||||
|
||||
String first = nfcCommunicate(firstApdu + getHex(one));
|
||||
nfcCommunicate(firstApdu + getHex(one));
|
||||
String second = nfcCommunicate(secondApdu + getHex(two) + le);
|
||||
|
||||
String decryptedSessionKey = nfcGetDataField(second);
|
||||
|
||||
Log.d(Constants.TAG, "decryptedSessionKey: " + decryptedSessionKey);
|
||||
String decryptedSessionKey = getDataField(second);
|
||||
|
||||
return Hex.decode(decryptedSessionKey);
|
||||
}
|
||||
@@ -205,7 +217,8 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
* @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
|
||||
* For PW3 (Admin PIN), mode is 0x83.
|
||||
*/
|
||||
public void nfcVerifyPIN(int mode) throws IOException {
|
||||
// METHOD UPDATED [OK]
|
||||
public void nfcVerifyPin(int mode) throws IOException {
|
||||
if (mPin != null || mode == 0x83) {
|
||||
|
||||
byte[] pin;
|
||||
@@ -218,18 +231,9 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
|
||||
// See specification, page 51
|
||||
String accepted = "9000";
|
||||
|
||||
// Command APDU for VERIFY command (page 32)
|
||||
String login =
|
||||
"00" // CLA
|
||||
+ "20" // INS
|
||||
+ "00" // P1
|
||||
+ String.format("%02x", mode) // P2
|
||||
+ String.format("%02x", pin.length) // Lc
|
||||
+ Hex.toHexString(pin);
|
||||
String response = nfcCommunicate(login); // login
|
||||
String response = nfcTryPin(mode, pin); // login
|
||||
if (!response.equals(accepted)) {
|
||||
throw new PinException("Bad PIN!", parseCardStatus(response));
|
||||
throw new CardException("Bad PIN!", parseCardStatus(response));
|
||||
}
|
||||
|
||||
if (mode == 0x81) {
|
||||
@@ -243,23 +247,24 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
}
|
||||
|
||||
/**
|
||||
* Stores a data object on the card. Automatically validates the proper PIN for the operation.
|
||||
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
|
||||
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
|
||||
* (0x7F21) can exceed this length.
|
||||
*
|
||||
* @param dataObject The data object to be stored.
|
||||
* @param data The data to store in the object
|
||||
*/
|
||||
public void nfcPutData(int dataObject, byte[] data) throws IOException {
|
||||
// METHOD UPDATED [OK]
|
||||
public void putData(int dataObject, byte[] data) throws IOException {
|
||||
if (data.length > 254) {
|
||||
throw new IOException("Cannot PUT DATA with length > 254");
|
||||
}
|
||||
if (dataObject == 0x0101 || dataObject == 0x0103) {
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
nfcVerifyPIN(0x82); // (Verify PW1 for non-signing operations)
|
||||
nfcVerifyPin(0x82); // (Verify PW1 for non-signing operations)
|
||||
}
|
||||
} else if (!mPw3Validated) {
|
||||
nfcVerifyPIN(0x83); // (Verify PW3)
|
||||
nfcVerifyPin(0x83); // (Verify PW3)
|
||||
}
|
||||
|
||||
String putDataApdu = "00" // CLA
|
||||
@@ -275,15 +280,17 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Puts a key on the card in the given slot.
|
||||
* Puts a key on the token in the given slot.
|
||||
*
|
||||
* @param slot The slot on the card where the key should be stored:
|
||||
* @param slot The slot on the token where the key should be stored:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
*/
|
||||
public void nfcPutKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
|
||||
// METHOD UPDATED [OK]
|
||||
public void putKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
|
||||
throws IOException {
|
||||
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
|
||||
throw new IOException("Invalid key slot");
|
||||
@@ -299,16 +306,16 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
|
||||
// Shouldn't happen; the UI should block the user from getting an incompatible key this far.
|
||||
if (crtSecretKey.getModulus().bitLength() > 2048) {
|
||||
throw new IOException("Key too large to export to smart card.");
|
||||
throw new IOException("Key too large to export to Security Token.");
|
||||
}
|
||||
|
||||
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
|
||||
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
|
||||
throw new IOException("Invalid public exponent for smart card key.");
|
||||
throw new IOException("Invalid public exponent for smart Security Token.");
|
||||
}
|
||||
|
||||
if (!mPw3Validated) {
|
||||
nfcVerifyPIN(0x83); // (Verify PW3 with mode 83)
|
||||
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
|
||||
}
|
||||
|
||||
byte[] header = Hex.decode(
|
||||
@@ -360,7 +367,7 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
String putKeyCommand = "10DB3FFF";
|
||||
String lastPutKeyCommand = "00DB3FFF";
|
||||
|
||||
// Now we're ready to communicate with the card.
|
||||
// Now we're ready to communicate with the token.
|
||||
offset = 0;
|
||||
String response;
|
||||
while (offset < dataToSend.length) {
|
||||
@@ -379,7 +386,7 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
}
|
||||
|
||||
if (!response.endsWith("9000")) {
|
||||
throw new CardException("Key export to card failed", parseCardStatus(response));
|
||||
throw new CardException("Key export to Security Token failed", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -387,6 +394,7 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
Arrays.fill(dataToSend, (byte) 0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return the key id from application specific data stored on tag, or null
|
||||
* if it doesn't exist.
|
||||
@@ -395,7 +403,7 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
* @return The long key id of the requested key, or null if not found.
|
||||
*/
|
||||
public Long nfcGetKeyId(int idx) throws IOException {
|
||||
byte[] fp = nfcGetFingerprint(idx);
|
||||
byte[] fp = getMasterKeyFingerprint(idx);
|
||||
if (fp == null) {
|
||||
return null;
|
||||
}
|
||||
@@ -412,12 +420,13 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
*
|
||||
* @return The fingerprints of all subkeys in a contiguous byte array.
|
||||
*/
|
||||
// METHOD UPDATED [OK]
|
||||
public byte[] getFingerprints() throws IOException {
|
||||
String data = "00CA006E00";
|
||||
byte[] buf = mTransport.sendAndReceive(Hex.decode(data));
|
||||
|
||||
Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
|
||||
Log.d(Constants.TAG, "nfc tlv data:\n" + tlv.prettyPrint());
|
||||
Log.d(Constants.TAG, "nfcGetFingerprints() Iso7816TLV tlv data:\n" + tlv.prettyPrint());
|
||||
|
||||
Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
|
||||
if (fptlv == null) {
|
||||
@@ -427,53 +436,38 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the PW Status Bytes from the card. This is a simple DO; no TLV decoding needed.
|
||||
* Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
|
||||
*
|
||||
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
|
||||
*/
|
||||
// METHOD UPDATED [OK]
|
||||
public byte[] nfcGetPwStatusBytes() throws IOException {
|
||||
String data = "00CA00C400";
|
||||
return mTransport.sendAndReceive(Hex.decode(data));
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the fingerprint from application specific data stored on tag, or
|
||||
* null if it doesn't exist.
|
||||
*
|
||||
* @param idx Index of the key to return the fingerprint from.
|
||||
* @return The fingerprint of the requested key, or null if not found.
|
||||
*/
|
||||
public byte[] nfcGetFingerprint(int idx) throws IOException {
|
||||
byte[] data = getFingerprints();
|
||||
|
||||
// return the master key fingerprint
|
||||
ByteBuffer fpbuf = ByteBuffer.wrap(data);
|
||||
byte[] fp = new byte[20];
|
||||
fpbuf.position(idx * 20);
|
||||
fpbuf.get(fp, 0, 20);
|
||||
|
||||
return fp;
|
||||
}
|
||||
|
||||
// METHOD UPDATED [OK]
|
||||
public byte[] getAid() throws IOException {
|
||||
String info = "00CA004F00";
|
||||
return mTransport.sendAndReceive(Hex.decode(info));
|
||||
}
|
||||
|
||||
// METHOD UPDATED [OK]
|
||||
public String getUserId() throws IOException {
|
||||
String info = "00CA006500";
|
||||
return nfcGetHolderName(nfcCommunicate(info));
|
||||
}
|
||||
|
||||
/**
|
||||
* Calls to calculate the signature and returns the MPI value
|
||||
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
|
||||
*
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
public byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
// METHOD UPDATED [OK]
|
||||
public byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
if (!mPw1ValidatedForSignature) {
|
||||
nfcVerifyPIN(0x81); // (Verify PW1 with mode 81 for signing)
|
||||
nfcVerifyPin(0x81); // (Verify PW1 with mode 81 for signing)
|
||||
}
|
||||
|
||||
// dsi, including Lc
|
||||
@@ -580,6 +574,10 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
return output.substring(0, output.length() - 4);
|
||||
}
|
||||
|
||||
/**
|
||||
* Transceive data via NFC encoded as Hex
|
||||
*/
|
||||
// METHOD UPDATED [OK]
|
||||
public String nfcCommunicate(String apdu) throws IOException, TransportIoException {
|
||||
return getHex(mTransport.sendAndReceive(Hex.decode(apdu)));
|
||||
}
|
||||
@@ -587,4 +585,141 @@ public class BaseJavacardDevice implements JavacardDevice {
|
||||
public boolean isConnected() {
|
||||
return mTransport.isConnected();
|
||||
}
|
||||
|
||||
// NEW METHOD [OK]
|
||||
public boolean isFidesmoToken() {
|
||||
if (isConnected()) { // Check if we can still talk to the card
|
||||
try {
|
||||
// By trying to select any apps that have the Fidesmo AID prefix we can
|
||||
// see if it is a Fidesmo device or not
|
||||
byte[] mSelectResponse = mTransport.sendAndReceive(Apdu.select(FIDESMO_APPS_AID_PREFIX));
|
||||
// Compare the status returned by our select with the OK status code
|
||||
return Apdu.hasStatus(mSelectResponse, Apdu.OK_APDU);
|
||||
} catch (IOException e) {
|
||||
Log.e(Constants.TAG, "Card communication failed!", e);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
|
||||
* this command also has the effect of resetting the digital signature counter.
|
||||
* NOTE: This does not set the key fingerprint data object! After calling this command, you
|
||||
* must construct a public key packet using the returned public key data objects, compute the
|
||||
* key fingerprint, and store it on the card using: putData(0xC8, key.getFingerprint())
|
||||
*
|
||||
* @param slot The slot on the card where the key should be generated:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
* @return the public key data objects, in TLV format. For RSA this will be the public modulus
|
||||
* (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
|
||||
*/
|
||||
// NEW METHOD [OK]
|
||||
public byte[] nfcGenerateKey(int slot) throws IOException {
|
||||
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
|
||||
throw new IOException("Invalid key slot");
|
||||
}
|
||||
|
||||
if (!mPw3Validated) {
|
||||
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
|
||||
}
|
||||
|
||||
String generateKeyApdu = "0047800002" + String.format("%02x", slot) + "0000";
|
||||
String getResponseApdu = "00C00000";
|
||||
|
||||
String first = nfcCommunicate(generateKeyApdu);
|
||||
String second = nfcCommunicate(getResponseApdu);
|
||||
|
||||
if (!second.endsWith("9000")) {
|
||||
throw new IOException("On-card key generation failed");
|
||||
}
|
||||
|
||||
String publicKeyData = getDataField(first) + getDataField(second);
|
||||
|
||||
Log.d(Constants.TAG, "Public Key Data Objects: " + publicKeyData);
|
||||
|
||||
return Hex.decode(publicKeyData);
|
||||
}
|
||||
|
||||
// NEW METHOD [OK][OK]
|
||||
private String getDataField(String output) {
|
||||
return output.substring(0, output.length() - 4);
|
||||
}
|
||||
|
||||
// NEW METHOD [OK]
|
||||
private String nfcTryPin(int mode, byte[] pin) throws IOException {
|
||||
// Command APDU for VERIFY command (page 32)
|
||||
String login =
|
||||
"00" // CLA
|
||||
+ "20" // INS
|
||||
+ "00" // P1
|
||||
+ String.format("%02x", mode) // P2
|
||||
+ String.format("%02x", pin.length) // Lc
|
||||
+ Hex.toHexString(pin);
|
||||
|
||||
return nfcCommunicate(login);
|
||||
}
|
||||
|
||||
/**
|
||||
* Resets security token, which deletes all keys and data objects.
|
||||
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
|
||||
* Afterwards, the token is reactivated.
|
||||
*/
|
||||
// NEW METHOD [OK]
|
||||
public void resetAndWipeToken() throws IOException {
|
||||
String accepted = "9000";
|
||||
|
||||
// try wrong PIN 4 times until counter goes to C0
|
||||
byte[] pin = "XXXXXX".getBytes();
|
||||
for (int i = 0; i <= 4; i++) {
|
||||
String response = nfcTryPin(0x81, pin);
|
||||
if (response.equals(accepted)) { // Should NOT accept!
|
||||
throw new CardException("Should never happen, XXXXXX has been accepted!", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
// try wrong Admin PIN 4 times until counter goes to C0
|
||||
byte[] adminPin = "XXXXXXXX".getBytes();
|
||||
for (int i = 0; i <= 4; i++) {
|
||||
String response = nfcTryPin(0x83, adminPin);
|
||||
if (response.equals(accepted)) { // Should NOT accept!
|
||||
throw new CardException("Should never happen, XXXXXXXX has been accepted", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
// reactivate token!
|
||||
String reactivate1 = "00" + "e6" + "00" + "00";
|
||||
String reactivate2 = "00" + "44" + "00" + "00";
|
||||
String response1 = nfcCommunicate(reactivate1);
|
||||
String response2 = nfcCommunicate(reactivate2);
|
||||
if (!response1.equals(accepted) || !response2.equals(accepted)) {
|
||||
throw new CardException("Reactivating failed!", parseCardStatus(response1));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the fingerprint from application specific data stored on tag, or
|
||||
* null if it doesn't exist.
|
||||
*
|
||||
* @param idx Index of the key to return the fingerprint from.
|
||||
* @return The fingerprint of the requested key, or null if not found.
|
||||
*/
|
||||
public byte[] getMasterKeyFingerprint(int idx) throws IOException {
|
||||
byte[] data = getFingerprints();
|
||||
if (data == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
// return the master key fingerprint
|
||||
ByteBuffer fpbuf = ByteBuffer.wrap(data);
|
||||
byte[] fp = new byte[20];
|
||||
fpbuf.position(idx * 20);
|
||||
fpbuf.get(fp, 0, 20);
|
||||
|
||||
return fp;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -30,7 +30,7 @@ public interface JavacardDevice {
|
||||
* @param pinType For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
|
||||
* @param newPin The new PW1 or PW3.
|
||||
*/
|
||||
void nfcModifyPIN(PinType pinType, byte[] newPin) throws IOException;
|
||||
void modifyPin(int pinType, byte[] newPin) throws IOException;
|
||||
|
||||
/**
|
||||
* Calls to calculate the signature and returns the MPI value
|
||||
@@ -61,5 +61,43 @@ public interface JavacardDevice {
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException;
|
||||
byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException;
|
||||
|
||||
boolean isFidesmoToken();
|
||||
|
||||
/**
|
||||
* Return the fingerprint from application specific data stored on tag, or
|
||||
* null if it doesn't exist.
|
||||
*
|
||||
* @param idx Index of the key to return the fingerprint from.
|
||||
* @return The fingerprint of the requested key, or null if not found.
|
||||
*/
|
||||
byte[] getMasterKeyFingerprint(int idx) throws IOException;
|
||||
|
||||
/**
|
||||
* Resets security token, which deletes all keys and data objects.
|
||||
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
|
||||
* Afterwards, the token is reactivated.
|
||||
*/
|
||||
void resetAndWipeToken() throws IOException;
|
||||
|
||||
/**
|
||||
* Puts a key on the token in the given slot.
|
||||
*
|
||||
* @param slot The slot on the token where the key should be stored:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
*/
|
||||
void putKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException;
|
||||
|
||||
/**
|
||||
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
|
||||
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
|
||||
* (0x7F21) can exceed this length.
|
||||
*
|
||||
* @param dataObject The data object to be stored.
|
||||
* @param data The data to store in the object
|
||||
*/
|
||||
void putData(int dataObject, byte[] data) throws IOException;
|
||||
}
|
||||
|
||||
@@ -1,23 +1,23 @@
|
||||
package org.sufficientlysecure.keychain.javacard;
|
||||
|
||||
import android.nfc.tech.IsoDep;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
public class NfcTransport implements Transport {
|
||||
import nordpol.IsoCard;
|
||||
|
||||
public class NfcTransport implements Transport {
|
||||
// timeout is set to 100 seconds to avoid cancellation during calculation
|
||||
private static final int TIMEOUT = 100 * 1000;
|
||||
private final IsoDep mIsoDep;
|
||||
private final IsoCard mIsoCard;
|
||||
|
||||
public NfcTransport(final IsoDep isoDep) throws IOException {
|
||||
this.mIsoDep = isoDep;
|
||||
mIsoDep.setTimeout(TIMEOUT);
|
||||
mIsoDep.connect();
|
||||
public NfcTransport(final IsoCard isoDep) throws IOException {
|
||||
this.mIsoCard = isoDep;
|
||||
mIsoCard.setTimeout(TIMEOUT);
|
||||
mIsoCard.connect();
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] sendAndReceive(final byte[] data) throws TransportIoException, IOException {
|
||||
return mIsoDep.transceive(data);
|
||||
return mIsoCard.transceive(data);
|
||||
}
|
||||
|
||||
@Override
|
||||
@@ -26,6 +26,6 @@ public class NfcTransport implements Transport {
|
||||
|
||||
@Override
|
||||
public boolean isConnected() {
|
||||
return mIsoDep.isConnected();
|
||||
return mIsoCard.isConnected();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -149,9 +149,9 @@ public class CreateKeyActivity extends BaseSecurityTokenNfcActivity {
|
||||
return;
|
||||
}
|
||||
|
||||
mScannedFingerprints = nfcGetFingerprints();
|
||||
mNfcAid = nfcGetAid();
|
||||
mNfcUserId = nfcGetUserId();
|
||||
mScannedFingerprints = mJavacardDevice.getFingerprints();
|
||||
mNfcAid = mJavacardDevice.getAid();
|
||||
mNfcUserId = mJavacardDevice.getUserId();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
||||
@@ -250,9 +250,9 @@ public class CreateSecurityTokenImportResetFragment
|
||||
@Override
|
||||
public void doNfcInBackground() throws IOException {
|
||||
|
||||
mTokenFingerprints = mCreateKeyActivity.nfcGetFingerprints();
|
||||
mTokenAid = mCreateKeyActivity.nfcGetAid();
|
||||
mTokenUserId = mCreateKeyActivity.nfcGetUserId();
|
||||
mTokenFingerprints = mCreateKeyActivity.mJavacardDevice.getFingerprints();
|
||||
mTokenAid = mCreateKeyActivity.mJavacardDevice.getAid();
|
||||
mTokenUserId = mCreateKeyActivity.mJavacardDevice.getUserId();
|
||||
|
||||
byte[] fp = new byte[20];
|
||||
ByteBuffer.wrap(fp).put(mTokenFingerprints, 0, 20);
|
||||
|
||||
@@ -162,7 +162,7 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenNfcActivity
|
||||
case NFC_DECRYPT: {
|
||||
for (int i = 0; i < mRequiredInput.mInputData.length; i++) {
|
||||
byte[] encryptedSessionKey = mRequiredInput.mInputData[i];
|
||||
byte[] decryptedSessionKey = nfcDecryptSessionKey(encryptedSessionKey);
|
||||
byte[] decryptedSessionKey = mJavacardDevice.decryptSessionKey(encryptedSessionKey);
|
||||
mInputParcel.addCryptoData(encryptedSessionKey, decryptedSessionKey);
|
||||
}
|
||||
break;
|
||||
@@ -173,15 +173,15 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenNfcActivity
|
||||
for (int i = 0; i < mRequiredInput.mInputData.length; i++) {
|
||||
byte[] hash = mRequiredInput.mInputData[i];
|
||||
int algo = mRequiredInput.mSignAlgos[i];
|
||||
byte[] signedHash = nfcCalculateSignature(hash, algo);
|
||||
byte[] signedHash = mJavacardDevice.calculateSignature(hash, algo);
|
||||
mInputParcel.addCryptoData(hash, signedHash);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case NFC_MOVE_KEY_TO_CARD: {
|
||||
// TODO: assume PIN and Admin PIN to be default for this operation
|
||||
mPin = new Passphrase("123456");
|
||||
mAdminPin = new Passphrase("12345678");
|
||||
mJavacardDevice.setPin(new Passphrase("123456"));
|
||||
mJavacardDevice.setAdminPin(new Passphrase("12345678"));
|
||||
|
||||
ProviderHelper providerHelper = new ProviderHelper(this);
|
||||
CanonicalizedSecretKeyRing secretKeyRing;
|
||||
@@ -206,7 +206,7 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenNfcActivity
|
||||
long keyGenerationTimestampMillis = key.getCreationTime().getTime();
|
||||
long keyGenerationTimestamp = keyGenerationTimestampMillis / 1000;
|
||||
byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
|
||||
byte[] tokenSerialNumber = Arrays.copyOf(nfcGetAid(), 16);
|
||||
byte[] tokenSerialNumber = Arrays.copyOf(mJavacardDevice.getAid(), 16);
|
||||
|
||||
Passphrase passphrase;
|
||||
try {
|
||||
@@ -218,25 +218,25 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenNfcActivity
|
||||
|
||||
if (key.canSign() || key.canCertify()) {
|
||||
if (shouldPutKey(key.getFingerprint(), 0)) {
|
||||
nfcPutKey(0xB6, key, passphrase);
|
||||
nfcPutData(0xCE, timestampBytes);
|
||||
nfcPutData(0xC7, key.getFingerprint());
|
||||
mJavacardDevice.putKey(0xB6, key, passphrase);
|
||||
mJavacardDevice.putData(0xCE, timestampBytes);
|
||||
mJavacardDevice.putData(0xC7, key.getFingerprint());
|
||||
} else {
|
||||
throw new IOException("Key slot occupied; token must be reset to put new signature key.");
|
||||
}
|
||||
} else if (key.canEncrypt()) {
|
||||
if (shouldPutKey(key.getFingerprint(), 1)) {
|
||||
nfcPutKey(0xB8, key, passphrase);
|
||||
nfcPutData(0xCF, timestampBytes);
|
||||
nfcPutData(0xC8, key.getFingerprint());
|
||||
mJavacardDevice.putKey(0xB8, key, passphrase);
|
||||
mJavacardDevice.putData(0xCF, timestampBytes);
|
||||
mJavacardDevice.putData(0xC8, key.getFingerprint());
|
||||
} else {
|
||||
throw new IOException("Key slot occupied; token must be reset to put new decryption key.");
|
||||
}
|
||||
} else if (key.canAuthenticate()) {
|
||||
if (shouldPutKey(key.getFingerprint(), 2)) {
|
||||
nfcPutKey(0xA4, key, passphrase);
|
||||
nfcPutData(0xD0, timestampBytes);
|
||||
nfcPutData(0xC9, key.getFingerprint());
|
||||
mJavacardDevice.putKey(0xA4, key, passphrase);
|
||||
mJavacardDevice.putData(0xD0, timestampBytes);
|
||||
mJavacardDevice.putData(0xC9, key.getFingerprint());
|
||||
} else {
|
||||
throw new IOException("Key slot occupied; token must be reset to put new authentication key.");
|
||||
}
|
||||
@@ -249,13 +249,13 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenNfcActivity
|
||||
}
|
||||
|
||||
// change PINs afterwards
|
||||
nfcModifyPin(0x81, newPin);
|
||||
nfcModifyPin(0x83, newAdminPin);
|
||||
mJavacardDevice.modifyPin(0x81, newPin);
|
||||
mJavacardDevice.modifyPin(0x83, newAdminPin);
|
||||
|
||||
break;
|
||||
}
|
||||
case NFC_RESET_CARD: {
|
||||
nfcReset();
|
||||
mJavacardDevice.resetAndWipeToken();
|
||||
|
||||
break;
|
||||
}
|
||||
@@ -330,7 +330,7 @@ public class SecurityTokenOperationActivity extends BaseSecurityTokenNfcActivity
|
||||
}
|
||||
|
||||
private boolean shouldPutKey(byte[] fingerprint, int idx) throws IOException {
|
||||
byte[] tokenFingerprint = nfcGetMasterKeyFingerprint(idx);
|
||||
byte[] tokenFingerprint = mJavacardDevice.getMasterKeyFingerprint(idx);
|
||||
|
||||
// Note: special case: This should not happen, but happens with
|
||||
// https://github.com/FluffyKaon/OpenPGP-Card, thus for now assume true
|
||||
|
||||
@@ -649,9 +649,9 @@ public class ViewKeyActivity extends BaseSecurityTokenNfcActivity implements
|
||||
@Override
|
||||
protected void doNfcInBackground() throws IOException {
|
||||
|
||||
mNfcFingerprints = nfcGetFingerprints();
|
||||
mNfcUserId = nfcGetUserId();
|
||||
mNfcAid = nfcGetAid();
|
||||
mNfcFingerprints = mJavacardDevice.getFingerprints();
|
||||
mNfcUserId = mJavacardDevice.getUserId();
|
||||
mNfcAid = mJavacardDevice.getAid();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
||||
@@ -35,16 +35,19 @@ import android.os.AsyncTask;
|
||||
import android.os.Bundle;
|
||||
|
||||
import nordpol.Apdu;
|
||||
import nordpol.IsoCard;
|
||||
import nordpol.android.TagDispatcher;
|
||||
import nordpol.android.AndroidCard;
|
||||
import nordpol.android.OnDiscoveredTagListener;
|
||||
import nordpol.IsoCard;
|
||||
|
||||
import org.bouncycastle.bcpg.HashAlgorithmTags;
|
||||
import org.bouncycastle.util.Arrays;
|
||||
import org.bouncycastle.util.encoders.Hex;
|
||||
import org.sufficientlysecure.keychain.Constants;
|
||||
import org.sufficientlysecure.keychain.R;
|
||||
import org.sufficientlysecure.keychain.javacard.BaseJavacardDevice;
|
||||
import org.sufficientlysecure.keychain.javacard.JavacardDevice;
|
||||
import org.sufficientlysecure.keychain.javacard.NfcTransport;
|
||||
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
|
||||
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
|
||||
import org.sufficientlysecure.keychain.pgp.exception.PgpKeyNotFoundException;
|
||||
@@ -72,21 +75,19 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
|
||||
public static final String EXTRA_TAG_HANDLING_ENABLED = "tag_handling_enabled";
|
||||
|
||||
// Fidesmo constants
|
||||
private static final String FIDESMO_APPS_AID_PREFIX = "A000000617";
|
||||
private static final String FIDESMO_APP_PACKAGE = "com.fidesmo.sec.android";
|
||||
|
||||
protected Passphrase mPin;
|
||||
protected Passphrase mAdminPin;
|
||||
protected boolean mPw1ValidForMultipleSignatures;
|
||||
protected boolean mPw1ValidatedForSignature;
|
||||
protected boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
|
||||
protected boolean mPw3Validated;
|
||||
protected TagDispatcher mTagDispatcher;
|
||||
private IsoCard mIsoCard;
|
||||
private boolean mTagHandlingEnabled;
|
||||
//protected Passphrase mPin;
|
||||
//protected Passphrase mAdminPin;
|
||||
//protected boolean mPw1ValidForMultipleSignatures;
|
||||
//protected boolean mPw1ValidatedForSignature;
|
||||
//protected boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
|
||||
//protected boolean mPw3Validated;
|
||||
|
||||
private static final int TIMEOUT = 100000;
|
||||
public JavacardDevice mJavacardDevice;
|
||||
protected TagDispatcher mTagDispatcher;
|
||||
// private IsoCard mIsoCard;
|
||||
private boolean mTagHandlingEnabled;
|
||||
|
||||
private byte[] mNfcFingerprints;
|
||||
private String mNfcUserId;
|
||||
@@ -102,9 +103,9 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
* Override to implement NFC operations (background thread)
|
||||
*/
|
||||
protected void doNfcInBackground() throws IOException {
|
||||
mNfcFingerprints = nfcGetFingerprints();
|
||||
mNfcUserId = nfcGetUserId();
|
||||
mNfcAid = nfcGetAid();
|
||||
mNfcFingerprints = mJavacardDevice.getFingerprints();
|
||||
mNfcUserId = mJavacardDevice.getUserId();
|
||||
mNfcAid = mJavacardDevice.getAid();
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -316,7 +317,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
}
|
||||
// 6A82 app not installed on security token!
|
||||
case 0x6A82: {
|
||||
if (isFidesmoToken()) {
|
||||
if (mJavacardDevice.isFidesmoToken()) {
|
||||
// Check if the Fidesmo app is installed
|
||||
if (isAndroidAppInstalled(FIDESMO_APP_PACKAGE)) {
|
||||
promptFidesmoPgpInstall();
|
||||
@@ -363,7 +364,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
Passphrase passphrase = PassphraseCacheService.getCachedPassphrase(this,
|
||||
requiredInput.getMasterKeyId(), requiredInput.getSubKeyId());
|
||||
if (passphrase != null) {
|
||||
mPin = passphrase;
|
||||
mJavacardDevice.setPin(passphrase);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -388,7 +389,7 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
return;
|
||||
}
|
||||
CryptoInputParcel input = data.getParcelableExtra(PassphraseDialogActivity.RESULT_CRYPTO_INPUT);
|
||||
mPin = input.getPassphrase();
|
||||
mJavacardDevice.setPin(input.getPassphrase());
|
||||
break;
|
||||
}
|
||||
default:
|
||||
@@ -413,573 +414,19 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
protected void handleTagDiscovered(Tag tag) throws IOException {
|
||||
|
||||
// Connect to the detected tag, setting a couple of settings
|
||||
mIsoCard = AndroidCard.get(tag);
|
||||
if (mIsoCard == null) {
|
||||
IsoCard isoCard = AndroidCard.get(tag);
|
||||
if (isoCard == null) {
|
||||
throw new IsoDepNotSupportedException("Tag does not support ISO-DEP (ISO 14443-4)");
|
||||
}
|
||||
mIsoCard.setTimeout(TIMEOUT); // timeout is set to 100 seconds to avoid cancellation during calculation
|
||||
mIsoCard.connect();
|
||||
|
||||
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
|
||||
// See specification, page 51
|
||||
String accepted = "9000";
|
||||
|
||||
// Command APDU (page 51) for SELECT FILE command (page 29)
|
||||
String opening =
|
||||
"00" // CLA
|
||||
+ "A4" // INS
|
||||
+ "04" // P1
|
||||
+ "00" // P2
|
||||
+ "06" // Lc (number of bytes)
|
||||
+ "D27600012401" // Data (6 bytes)
|
||||
+ "00"; // Le
|
||||
String response = nfcCommunicate(opening); // activate connection
|
||||
if ( ! response.endsWith(accepted) ) {
|
||||
throw new CardException("Initialization failed!", parseCardStatus(response));
|
||||
}
|
||||
|
||||
byte[] pwStatusBytes = nfcGetPwStatusBytes();
|
||||
mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
|
||||
mPw1ValidatedForSignature = false;
|
||||
mPw1ValidatedForDecrypt = false;
|
||||
mPw3Validated = false;
|
||||
mJavacardDevice = new BaseJavacardDevice(new NfcTransport(isoCard));
|
||||
mJavacardDevice.connectToDevice();
|
||||
|
||||
doNfcInBackground();
|
||||
|
||||
}
|
||||
|
||||
public boolean isNfcConnected() {
|
||||
return mIsoCard.isConnected();
|
||||
}
|
||||
|
||||
/** Return the key id from application specific data stored on tag, or null
|
||||
* if it doesn't exist.
|
||||
*
|
||||
* @param idx Index of the key to return the fingerprint from.
|
||||
* @return The long key id of the requested key, or null if not found.
|
||||
*/
|
||||
public Long nfcGetKeyId(int idx) throws IOException {
|
||||
byte[] fp = nfcGetMasterKeyFingerprint(idx);
|
||||
if (fp == null) {
|
||||
return null;
|
||||
}
|
||||
ByteBuffer buf = ByteBuffer.wrap(fp);
|
||||
// skip first 12 bytes of the fingerprint
|
||||
buf.position(12);
|
||||
// the last eight bytes are the key id (big endian, which is default order in ByteBuffer)
|
||||
return buf.getLong();
|
||||
}
|
||||
|
||||
/** Return fingerprints of all keys from application specific data stored
|
||||
* on tag, or null if data not available.
|
||||
*
|
||||
* @return The fingerprints of all subkeys in a contiguous byte array.
|
||||
*/
|
||||
public byte[] nfcGetFingerprints() throws IOException {
|
||||
String data = "00CA006E00";
|
||||
byte[] buf = mIsoCard.transceive(Hex.decode(data));
|
||||
|
||||
Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
|
||||
Log.d(Constants.TAG, "nfcGetFingerprints() Iso7816TLV tlv data:\n" + tlv.prettyPrint());
|
||||
|
||||
Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
|
||||
if (fptlv == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return fptlv.mV;
|
||||
}
|
||||
|
||||
/** Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
|
||||
*
|
||||
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
|
||||
*/
|
||||
public byte[] nfcGetPwStatusBytes() throws IOException {
|
||||
String data = "00CA00C400";
|
||||
return mIsoCard.transceive(Hex.decode(data));
|
||||
}
|
||||
|
||||
/** Return the fingerprint from application specific data stored on tag, or
|
||||
* null if it doesn't exist.
|
||||
*
|
||||
* @param idx Index of the key to return the fingerprint from.
|
||||
* @return The fingerprint of the requested key, or null if not found.
|
||||
*/
|
||||
public byte[] nfcGetMasterKeyFingerprint(int idx) throws IOException {
|
||||
byte[] data = nfcGetFingerprints();
|
||||
if (data == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
// return the master key fingerprint
|
||||
ByteBuffer fpbuf = ByteBuffer.wrap(data);
|
||||
byte[] fp = new byte[20];
|
||||
fpbuf.position(idx * 20);
|
||||
fpbuf.get(fp, 0, 20);
|
||||
|
||||
return fp;
|
||||
}
|
||||
|
||||
public byte[] nfcGetAid() throws IOException {
|
||||
String info = "00CA004F00";
|
||||
return mIsoCard.transceive(Hex.decode(info));
|
||||
}
|
||||
|
||||
public String nfcGetUserId() throws IOException {
|
||||
String info = "00CA006500";
|
||||
return getHolderName(nfcCommunicate(info));
|
||||
}
|
||||
|
||||
/**
|
||||
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
|
||||
*
|
||||
* @param hash the hash for signing
|
||||
* @return a big integer representing the MPI for the given hash
|
||||
*/
|
||||
public byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException {
|
||||
if (!mPw1ValidatedForSignature) {
|
||||
nfcVerifyPin(0x81); // (Verify PW1 with mode 81 for signing)
|
||||
}
|
||||
|
||||
// dsi, including Lc
|
||||
String dsi;
|
||||
|
||||
Log.i(Constants.TAG, "Hash: " + hashAlgo);
|
||||
switch (hashAlgo) {
|
||||
case HashAlgorithmTags.SHA1:
|
||||
if (hash.length != 20) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
|
||||
}
|
||||
dsi = "23" // Lc
|
||||
+ "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
|
||||
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
|
||||
+ "0605" + "2B0E03021A" // OID of SHA1
|
||||
+ "0500" // TLV coding of ZERO
|
||||
+ "0414" + getHex(hash); // 0x14 are 20 hash bytes
|
||||
break;
|
||||
case HashAlgorithmTags.RIPEMD160:
|
||||
if (hash.length != 20) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
|
||||
}
|
||||
dsi = "233021300906052B2403020105000414" + getHex(hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA224:
|
||||
if (hash.length != 28) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
|
||||
}
|
||||
dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA256:
|
||||
if (hash.length != 32) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
|
||||
}
|
||||
dsi = "333031300D060960864801650304020105000420" + getHex(hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA384:
|
||||
if (hash.length != 48) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
|
||||
}
|
||||
dsi = "433041300D060960864801650304020205000430" + getHex(hash);
|
||||
break;
|
||||
case HashAlgorithmTags.SHA512:
|
||||
if (hash.length != 64) {
|
||||
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
|
||||
}
|
||||
dsi = "533051300D060960864801650304020305000440" + getHex(hash);
|
||||
break;
|
||||
default:
|
||||
throw new IOException("Not supported hash algo!");
|
||||
}
|
||||
|
||||
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
|
||||
String apdu =
|
||||
"002A9E9A" // CLA, INS, P1, P2
|
||||
+ dsi // digital signature input
|
||||
+ "00"; // Le
|
||||
|
||||
String response = nfcCommunicate(apdu);
|
||||
|
||||
// split up response into signature and status
|
||||
String status = response.substring(response.length()-4);
|
||||
String signature = response.substring(0, response.length() - 4);
|
||||
|
||||
// while we are getting 0x61 status codes, retrieve more data
|
||||
while (status.substring(0, 2).equals("61")) {
|
||||
Log.d(Constants.TAG, "requesting more data, status " + status);
|
||||
// Send GET RESPONSE command
|
||||
response = nfcCommunicate("00C00000" + status.substring(2));
|
||||
status = response.substring(response.length()-4);
|
||||
signature += response.substring(0, response.length()-4);
|
||||
}
|
||||
|
||||
Log.d(Constants.TAG, "final response:" + status);
|
||||
|
||||
if (!mPw1ValidForMultipleSignatures) {
|
||||
mPw1ValidatedForSignature = false;
|
||||
}
|
||||
|
||||
if ( ! "9000".equals(status)) {
|
||||
throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
|
||||
}
|
||||
|
||||
// Make sure the signature we received is actually the expected number of bytes long!
|
||||
if (signature.length() != 256 && signature.length() != 512) {
|
||||
throw new IOException("Bad signature length! Expected 128 or 256 bytes, got " + signature.length() / 2);
|
||||
}
|
||||
|
||||
return Hex.decode(signature);
|
||||
}
|
||||
|
||||
/**
|
||||
* Call DECIPHER command
|
||||
*
|
||||
* @param encryptedSessionKey the encoded session key
|
||||
* @return the decoded session key
|
||||
*/
|
||||
public byte[] nfcDecryptSessionKey(byte[] encryptedSessionKey) throws IOException {
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
nfcVerifyPin(0x82); // (Verify PW1 with mode 82 for decryption)
|
||||
}
|
||||
|
||||
String firstApdu = "102a8086fe";
|
||||
String secondApdu = "002a808603";
|
||||
String le = "00";
|
||||
|
||||
byte[] one = new byte[254];
|
||||
// leave out first byte:
|
||||
System.arraycopy(encryptedSessionKey, 1, one, 0, one.length);
|
||||
|
||||
byte[] two = new byte[encryptedSessionKey.length - 1 - one.length];
|
||||
for (int i = 0; i < two.length; i++) {
|
||||
two[i] = encryptedSessionKey[i + one.length + 1];
|
||||
}
|
||||
|
||||
nfcCommunicate(firstApdu + getHex(one));
|
||||
String second = nfcCommunicate(secondApdu + getHex(two) + le);
|
||||
|
||||
String decryptedSessionKey = getDataField(second);
|
||||
|
||||
return Hex.decode(decryptedSessionKey);
|
||||
}
|
||||
|
||||
/** Verifies the user's PW1 or PW3 with the appropriate mode.
|
||||
*
|
||||
* @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
|
||||
* For PW3 (Admin PIN), mode is 0x83.
|
||||
*/
|
||||
public void nfcVerifyPin(int mode) throws IOException {
|
||||
if (mPin != null || mode == 0x83) {
|
||||
|
||||
byte[] pin;
|
||||
if (mode == 0x83) {
|
||||
pin = mAdminPin.toStringUnsafe().getBytes();
|
||||
} else {
|
||||
pin = mPin.toStringUnsafe().getBytes();
|
||||
}
|
||||
|
||||
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
|
||||
// See specification, page 51
|
||||
String accepted = "9000";
|
||||
String response = nfcTryPin(mode, pin); // login
|
||||
if (!response.equals(accepted)) {
|
||||
throw new CardException("Bad PIN!", parseCardStatus(response));
|
||||
}
|
||||
|
||||
if (mode == 0x81) {
|
||||
mPw1ValidatedForSignature = true;
|
||||
} else if (mode == 0x82) {
|
||||
mPw1ValidatedForDecrypt = true;
|
||||
} else if (mode == 0x83) {
|
||||
mPw3Validated = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Resets security token, which deletes all keys and data objects.
|
||||
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
|
||||
* Afterwards, the token is reactivated.
|
||||
*/
|
||||
public void nfcReset() throws IOException {
|
||||
String accepted = "9000";
|
||||
|
||||
// try wrong PIN 4 times until counter goes to C0
|
||||
byte[] pin = "XXXXXX".getBytes();
|
||||
for (int i = 0; i <= 4; i++) {
|
||||
String response = nfcTryPin(0x81, pin);
|
||||
if (response.equals(accepted)) { // Should NOT accept!
|
||||
throw new CardException("Should never happen, XXXXXX has been accepted!", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
// try wrong Admin PIN 4 times until counter goes to C0
|
||||
byte[] adminPin = "XXXXXXXX".getBytes();
|
||||
for (int i = 0; i <= 4; i++) {
|
||||
String response = nfcTryPin(0x83, adminPin);
|
||||
if (response.equals(accepted)) { // Should NOT accept!
|
||||
throw new CardException("Should never happen, XXXXXXXX has been accepted", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
// reactivate token!
|
||||
String reactivate1 = "00" + "e6" + "00" + "00";
|
||||
String reactivate2 = "00" + "44" + "00" + "00";
|
||||
String response1 = nfcCommunicate(reactivate1);
|
||||
String response2 = nfcCommunicate(reactivate2);
|
||||
if (!response1.equals(accepted) || !response2.equals(accepted)) {
|
||||
throw new CardException("Reactivating failed!", parseCardStatus(response1));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private String nfcTryPin(int mode, byte[] pin) throws IOException {
|
||||
// Command APDU for VERIFY command (page 32)
|
||||
String login =
|
||||
"00" // CLA
|
||||
+ "20" // INS
|
||||
+ "00" // P1
|
||||
+ String.format("%02x", mode) // P2
|
||||
+ String.format("%02x", pin.length) // Lc
|
||||
+ Hex.toHexString(pin);
|
||||
|
||||
return nfcCommunicate(login);
|
||||
}
|
||||
|
||||
/** Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
|
||||
* conformance to the token's requirements for key length.
|
||||
*
|
||||
* @param pw For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
|
||||
* @param newPin The new PW1 or PW3.
|
||||
*/
|
||||
public void nfcModifyPin(int pw, byte[] newPin) throws IOException {
|
||||
final int MAX_PW1_LENGTH_INDEX = 1;
|
||||
final int MAX_PW3_LENGTH_INDEX = 3;
|
||||
|
||||
byte[] pwStatusBytes = nfcGetPwStatusBytes();
|
||||
|
||||
if (pw == 0x81) {
|
||||
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
|
||||
throw new IOException("Invalid PIN length");
|
||||
}
|
||||
} else if (pw == 0x83) {
|
||||
if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
|
||||
throw new IOException("Invalid PIN length");
|
||||
}
|
||||
} else {
|
||||
throw new IOException("Invalid PW index for modify PIN operation");
|
||||
}
|
||||
|
||||
byte[] pin;
|
||||
if (pw == 0x83) {
|
||||
pin = mAdminPin.toStringUnsafe().getBytes();
|
||||
} else {
|
||||
pin = mPin.toStringUnsafe().getBytes();
|
||||
}
|
||||
|
||||
// Command APDU for CHANGE REFERENCE DATA command (page 32)
|
||||
String changeReferenceDataApdu = "00" // CLA
|
||||
+ "24" // INS
|
||||
+ "00" // P1
|
||||
+ String.format("%02x", pw) // P2
|
||||
+ String.format("%02x", pin.length + newPin.length) // Lc
|
||||
+ getHex(pin)
|
||||
+ getHex(newPin);
|
||||
String response = nfcCommunicate(changeReferenceDataApdu); // change PIN
|
||||
if (!response.equals("9000")) {
|
||||
throw new CardException("Failed to change PIN", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
|
||||
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
|
||||
* (0x7F21) can exceed this length.
|
||||
*
|
||||
* @param dataObject The data object to be stored.
|
||||
* @param data The data to store in the object
|
||||
*/
|
||||
public void nfcPutData(int dataObject, byte[] data) throws IOException {
|
||||
if (data.length > 254) {
|
||||
throw new IOException("Cannot PUT DATA with length > 254");
|
||||
}
|
||||
if (dataObject == 0x0101 || dataObject == 0x0103) {
|
||||
if (!mPw1ValidatedForDecrypt) {
|
||||
nfcVerifyPin(0x82); // (Verify PW1 for non-signing operations)
|
||||
}
|
||||
} else if (!mPw3Validated) {
|
||||
nfcVerifyPin(0x83); // (Verify PW3)
|
||||
}
|
||||
|
||||
String putDataApdu = "00" // CLA
|
||||
+ "DA" // INS
|
||||
+ String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
|
||||
+ String.format("%02x", dataObject & 0xFF) // P2
|
||||
+ String.format("%02x", data.length) // Lc
|
||||
+ getHex(data);
|
||||
|
||||
String response = nfcCommunicate(putDataApdu); // put data
|
||||
if (!response.equals("9000")) {
|
||||
throw new CardException("Failed to put data.", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Puts a key on the token in the given slot.
|
||||
*
|
||||
* @param slot The slot on the token where the key should be stored:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
*/
|
||||
public void nfcPutKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
|
||||
throws IOException {
|
||||
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
|
||||
throw new IOException("Invalid key slot");
|
||||
}
|
||||
|
||||
RSAPrivateCrtKey crtSecretKey;
|
||||
try {
|
||||
secretKey.unlock(passphrase);
|
||||
crtSecretKey = secretKey.getCrtSecretKey();
|
||||
} catch (PgpGeneralException e) {
|
||||
throw new IOException(e.getMessage());
|
||||
}
|
||||
|
||||
// Shouldn't happen; the UI should block the user from getting an incompatible key this far.
|
||||
if (crtSecretKey.getModulus().bitLength() > 2048) {
|
||||
throw new IOException("Key too large to export to Security Token.");
|
||||
}
|
||||
|
||||
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
|
||||
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
|
||||
throw new IOException("Invalid public exponent for smart Security Token.");
|
||||
}
|
||||
|
||||
if (!mPw3Validated) {
|
||||
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
|
||||
}
|
||||
|
||||
byte[] header= Hex.decode(
|
||||
"4D82" + "03A2" // Extended header list 4D82, length of 930 bytes. (page 23)
|
||||
+ String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
|
||||
+ "7F48" + "15" // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
|
||||
+ "9103" // Public modulus, length 3
|
||||
+ "928180" // Prime P, length 128
|
||||
+ "938180" // Prime Q, length 128
|
||||
+ "948180" // Coefficient (1/q mod p), length 128
|
||||
+ "958180" // Prime exponent P (d mod (p - 1)), length 128
|
||||
+ "968180" // Prime exponent Q (d mod (1 - 1)), length 128
|
||||
+ "97820100" // Modulus, length 256, last item in private key template
|
||||
+ "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
|
||||
byte[] dataToSend = new byte[934];
|
||||
byte[] currentKeyObject;
|
||||
int offset = 0;
|
||||
|
||||
System.arraycopy(header, 0, dataToSend, offset, header.length);
|
||||
offset += header.length;
|
||||
currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
|
||||
System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
|
||||
offset += 3;
|
||||
// NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
|
||||
// in the array to represent sign, so we take care to set the offset to 1 if necessary.
|
||||
currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
|
||||
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
||||
Arrays.fill(currentKeyObject, (byte)0);
|
||||
offset += 128;
|
||||
currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
|
||||
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
||||
Arrays.fill(currentKeyObject, (byte)0);
|
||||
offset += 128;
|
||||
currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
|
||||
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
||||
Arrays.fill(currentKeyObject, (byte)0);
|
||||
offset += 128;
|
||||
currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
|
||||
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
||||
Arrays.fill(currentKeyObject, (byte)0);
|
||||
offset += 128;
|
||||
currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
|
||||
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
|
||||
Arrays.fill(currentKeyObject, (byte)0);
|
||||
offset += 128;
|
||||
currentKeyObject = crtSecretKey.getModulus().toByteArray();
|
||||
System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);
|
||||
|
||||
String putKeyCommand = "10DB3FFF";
|
||||
String lastPutKeyCommand = "00DB3FFF";
|
||||
|
||||
// Now we're ready to communicate with the token.
|
||||
offset = 0;
|
||||
String response;
|
||||
while(offset < dataToSend.length) {
|
||||
int dataRemaining = dataToSend.length - offset;
|
||||
if (dataRemaining > 254) {
|
||||
response = nfcCommunicate(
|
||||
putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
|
||||
);
|
||||
offset += 254;
|
||||
} else {
|
||||
int length = dataToSend.length - offset;
|
||||
response = nfcCommunicate(
|
||||
lastPutKeyCommand + String.format("%02x", length)
|
||||
+ Hex.toHexString(dataToSend, offset, length));
|
||||
offset += length;
|
||||
}
|
||||
|
||||
if (!response.endsWith("9000")) {
|
||||
throw new CardException("Key export to Security Token failed", parseCardStatus(response));
|
||||
}
|
||||
}
|
||||
|
||||
// Clear array with secret data before we return.
|
||||
Arrays.fill(dataToSend, (byte) 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
|
||||
* this command also has the effect of resetting the digital signature counter.
|
||||
* NOTE: This does not set the key fingerprint data object! After calling this command, you
|
||||
* must construct a public key packet using the returned public key data objects, compute the
|
||||
* key fingerprint, and store it on the card using: nfcPutData(0xC8, key.getFingerprint())
|
||||
*
|
||||
* @param slot The slot on the card where the key should be generated:
|
||||
* 0xB6: Signature Key
|
||||
* 0xB8: Decipherment Key
|
||||
* 0xA4: Authentication Key
|
||||
* @return the public key data objects, in TLV format. For RSA this will be the public modulus
|
||||
* (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
|
||||
*/
|
||||
public byte[] nfcGenerateKey(int slot) throws IOException {
|
||||
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
|
||||
throw new IOException("Invalid key slot");
|
||||
}
|
||||
|
||||
if (!mPw3Validated) {
|
||||
nfcVerifyPin(0x83); // (Verify PW3 with mode 83)
|
||||
}
|
||||
|
||||
String generateKeyApdu = "0047800002" + String.format("%02x", slot) + "0000";
|
||||
String getResponseApdu = "00C00000";
|
||||
|
||||
String first = nfcCommunicate(generateKeyApdu);
|
||||
String second = nfcCommunicate(getResponseApdu);
|
||||
|
||||
if (!second.endsWith("9000")) {
|
||||
throw new IOException("On-card key generation failed");
|
||||
}
|
||||
|
||||
String publicKeyData = getDataField(first) + getDataField(second);
|
||||
|
||||
Log.d(Constants.TAG, "Public Key Data Objects: " + publicKeyData);
|
||||
|
||||
return Hex.decode(publicKeyData);
|
||||
}
|
||||
|
||||
/**
|
||||
* Transceive data via NFC encoded as Hex
|
||||
*/
|
||||
public String nfcCommunicate(String apdu) throws IOException {
|
||||
return getHex(mIsoCard.transceive(Hex.decode(apdu)));
|
||||
return mJavacardDevice.isConnected();
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1020,10 +467,6 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
}
|
||||
}
|
||||
|
||||
private String getDataField(String output) {
|
||||
return output.substring(0, output.length() - 4);
|
||||
}
|
||||
|
||||
public static String getHex(byte[] raw) {
|
||||
return new String(Hex.encode(raw));
|
||||
}
|
||||
@@ -1050,21 +493,6 @@ public abstract class BaseSecurityTokenNfcActivity extends BaseActivity implemen
|
||||
|
||||
}
|
||||
|
||||
private boolean isFidesmoToken() {
|
||||
if (isNfcConnected()) { // Check if we can still talk to the card
|
||||
try {
|
||||
// By trying to select any apps that have the Fidesmo AID prefix we can
|
||||
// see if it is a Fidesmo device or not
|
||||
byte[] mSelectResponse = mIsoCard.transceive(Apdu.select(FIDESMO_APPS_AID_PREFIX));
|
||||
// Compare the status returned by our select with the OK status code
|
||||
return Apdu.hasStatus(mSelectResponse, Apdu.OK_APDU);
|
||||
} catch (IOException e) {
|
||||
Log.e(Constants.TAG, "Card communication failed!", e);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Ask user if she wants to install PGP onto her Fidesmo token
|
||||
*/
|
||||
|
||||
Reference in New Issue
Block a user