OTG: port old primitives from otg_alt branch

This commit is contained in:
Nikita Mikhailov
2016-04-03 19:54:24 +06:00
parent e08ae31797
commit 65f17d7449
11 changed files with 995 additions and 0 deletions

View File

@@ -0,0 +1,590 @@
package org.sufficientlysecure.keychain.javacard;
import org.bouncycastle.bcpg.HashAlgorithmTags;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
import org.sufficientlysecure.keychain.util.Iso7816TLV;
import org.sufficientlysecure.keychain.util.Log;
import org.sufficientlysecure.keychain.util.Passphrase;
import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.security.interfaces.RSAPrivateCrtKey;
public class BaseJavacardDevice implements JavacardDevice {
private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
private final Transport mTransport;
private Passphrase mPin;
private Passphrase mAdminPin;
private boolean mPw1ValidForMultipleSignatures;
private boolean mPw1ValidatedForSignature;
private boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
private boolean mPw3Validated;
private boolean mTagHandlingEnabled;
public BaseJavacardDevice(final Transport mTransport) {
this.mTransport = mTransport;
}
private static String getHex(byte[] raw) {
return new String(Hex.encode(raw));
}
public Passphrase getPin() {
return mPin;
}
public void setPin(final Passphrase pin) {
this.mPin = pin;
}
public Passphrase getAdminPin() {
return mAdminPin;
}
public void setAdminPin(final Passphrase adminPin) {
this.mAdminPin = adminPin;
}
public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException {
long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
KeyType keyType = KeyType.from(secretKey);
if (keyType == null) {
throw new IOException("Inappropriate key flags for smart card key.");
}
// Slot is empty, or contains this key already. PUT KEY operation is safe
boolean canPutKey = !containsKey(keyType)
|| keyMatchesFingerPrint(keyType, secretKey.getFingerprint());
if (!canPutKey) {
throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
keyType.toString()));
}
nfcPutKey(keyType.getmSlot(), secretKey, passphrase);
nfcPutData(keyType.getmFingerprintObjectId(), secretKey.getFingerprint());
nfcPutData(keyType.getTimestampObjectId(), timestampBytes);
}
public boolean containsKey(KeyType keyType) throws IOException {
return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
}
public boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
return java.util.Arrays.equals(nfcGetFingerprint(keyType.getIdx()), fingerprint);
}
public void connectToDevice() throws IOException {
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
// See specification, page 51
String accepted = "9000";
// Command APDU (page 51) for SELECT FILE command (page 29)
String opening =
"00" // CLA
+ "A4" // INS
+ "04" // P1
+ "00" // P2
+ "06" // Lc (number of bytes)
+ "D27600012401" // Data (6 bytes)
+ "00"; // Le
String response = nfcCommunicate(opening); // activate connection
if (!response.endsWith(accepted)) {
throw new CardException("Initialization failed!", parseCardStatus(response));
}
byte[] pwStatusBytes = nfcGetPwStatusBytes();
mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
mPw1ValidatedForSignature = false;
mPw1ValidatedForDecrypt = false;
mPw3Validated = false;
}
/**
* Parses out the status word from a JavaCard response string.
*
* @param response A hex string with the response from the card
* @return A short indicating the SW1/SW2, or 0 if a status could not be determined.
*/
short parseCardStatus(String response) {
if (response.length() < 4) {
return 0; // invalid input
}
try {
return Short.parseShort(response.substring(response.length() - 4), 16);
} catch (NumberFormatException e) {
return 0;
}
}
/**
* Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
* conformance to the card's requirements for key length.
*
* @param pinType For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
* @param newPin The new PW1 or PW3.
*/
public void nfcModifyPIN(PinType pinType, byte[] newPin) throws IOException {
final int MAX_PW1_LENGTH_INDEX = 1;
final int MAX_PW3_LENGTH_INDEX = 3;
byte[] pwStatusBytes = nfcGetPwStatusBytes();
byte[] oldPin;
if (pinType == PinType.BASIC) {
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
oldPin = mPin.toStringUnsafe().getBytes();
} else {
if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
oldPin = mAdminPin.toStringUnsafe().getBytes();
}
// Command APDU for CHANGE REFERENCE DATA command (page 32)
String changeReferenceDataApdu = "00" // CLA
+ "24" // INS
+ "00" // P1
+ String.format("%02x", pinType.getmMode()) // P2
+ String.format("%02x", oldPin.length + newPin.length) // Lc
+ getHex(oldPin)
+ getHex(newPin);
String response = nfcCommunicate(changeReferenceDataApdu); // change PIN
if (!response.equals("9000")) {
throw new PinException("Failed to change PIN", parseCardStatus(response));
}
}
/**
* Calls to calculate the signature and returns the MPI value
*
* @param encryptedSessionKey the encoded session key
* @return the decoded session key
*/
public byte[] decryptSessionKey(byte[] encryptedSessionKey) throws IOException {
if (!mPw1ValidatedForDecrypt) {
nfcVerifyPIN(0x82); // (Verify PW1 with mode 82 for decryption)
}
String firstApdu = "102a8086fe";
String secondApdu = "002a808603";
String le = "00";
byte[] one = new byte[254];
// leave out first byte:
System.arraycopy(encryptedSessionKey, 1, one, 0, one.length);
byte[] two = new byte[encryptedSessionKey.length - 1 - one.length];
for (int i = 0; i < two.length; i++) {
two[i] = encryptedSessionKey[i + one.length + 1];
}
String first = nfcCommunicate(firstApdu + getHex(one));
String second = nfcCommunicate(secondApdu + getHex(two) + le);
String decryptedSessionKey = nfcGetDataField(second);
Log.d(Constants.TAG, "decryptedSessionKey: " + decryptedSessionKey);
return Hex.decode(decryptedSessionKey);
}
/**
* Verifies the user's PW1 or PW3 with the appropriate mode.
*
* @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
* For PW3 (Admin PIN), mode is 0x83.
*/
public void nfcVerifyPIN(int mode) throws IOException {
if (mPin != null || mode == 0x83) {
byte[] pin;
if (mode == 0x83) {
pin = mAdminPin.toStringUnsafe().getBytes();
} else {
pin = mPin.toStringUnsafe().getBytes();
}
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
// See specification, page 51
String accepted = "9000";
// Command APDU for VERIFY command (page 32)
String login =
"00" // CLA
+ "20" // INS
+ "00" // P1
+ String.format("%02x", mode) // P2
+ String.format("%02x", pin.length) // Lc
+ Hex.toHexString(pin);
String response = nfcCommunicate(login); // login
if (!response.equals(accepted)) {
throw new PinException("Bad PIN!", parseCardStatus(response));
}
if (mode == 0x81) {
mPw1ValidatedForSignature = true;
} else if (mode == 0x82) {
mPw1ValidatedForDecrypt = true;
} else if (mode == 0x83) {
mPw3Validated = true;
}
}
}
/**
* Stores a data object on the card. Automatically validates the proper PIN for the operation.
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
* (0x7F21) can exceed this length.
*
* @param dataObject The data object to be stored.
* @param data The data to store in the object
*/
public void nfcPutData(int dataObject, byte[] data) throws IOException {
if (data.length > 254) {
throw new IOException("Cannot PUT DATA with length > 254");
}
if (dataObject == 0x0101 || dataObject == 0x0103) {
if (!mPw1ValidatedForDecrypt) {
nfcVerifyPIN(0x82); // (Verify PW1 for non-signing operations)
}
} else if (!mPw3Validated) {
nfcVerifyPIN(0x83); // (Verify PW3)
}
String putDataApdu = "00" // CLA
+ "DA" // INS
+ String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
+ String.format("%02x", dataObject & 0xFF) // P2
+ String.format("%02x", data.length) // Lc
+ getHex(data);
String response = nfcCommunicate(putDataApdu); // put data
if (!response.equals("9000")) {
throw new CardException("Failed to put data.", parseCardStatus(response));
}
}
/**
* Puts a key on the card in the given slot.
*
* @param slot The slot on the card where the key should be stored:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
*/
public void nfcPutKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
throws IOException {
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
throw new IOException("Invalid key slot");
}
RSAPrivateCrtKey crtSecretKey;
try {
secretKey.unlock(passphrase);
crtSecretKey = secretKey.getCrtSecretKey();
} catch (PgpGeneralException e) {
throw new IOException(e.getMessage());
}
// Shouldn't happen; the UI should block the user from getting an incompatible key this far.
if (crtSecretKey.getModulus().bitLength() > 2048) {
throw new IOException("Key too large to export to smart card.");
}
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
throw new IOException("Invalid public exponent for smart card key.");
}
if (!mPw3Validated) {
nfcVerifyPIN(0x83); // (Verify PW3 with mode 83)
}
byte[] header = Hex.decode(
"4D82" + "03A2" // Extended header list 4D82, length of 930 bytes. (page 23)
+ String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
+ "7F48" + "15" // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
+ "9103" // Public modulus, length 3
+ "928180" // Prime P, length 128
+ "938180" // Prime Q, length 128
+ "948180" // Coefficient (1/q mod p), length 128
+ "958180" // Prime exponent P (d mod (p - 1)), length 128
+ "968180" // Prime exponent Q (d mod (1 - 1)), length 128
+ "97820100" // Modulus, length 256, last item in private key template
+ "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
byte[] dataToSend = new byte[934];
byte[] currentKeyObject;
int offset = 0;
System.arraycopy(header, 0, dataToSend, offset, header.length);
offset += header.length;
currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
offset += 3;
// NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
// in the array to represent sign, so we take care to set the offset to 1 if necessary.
currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte) 0);
offset += 128;
currentKeyObject = crtSecretKey.getModulus().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);
String putKeyCommand = "10DB3FFF";
String lastPutKeyCommand = "00DB3FFF";
// Now we're ready to communicate with the card.
offset = 0;
String response;
while (offset < dataToSend.length) {
int dataRemaining = dataToSend.length - offset;
if (dataRemaining > 254) {
response = nfcCommunicate(
putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
);
offset += 254;
} else {
int length = dataToSend.length - offset;
response = nfcCommunicate(
lastPutKeyCommand + String.format("%02x", length)
+ Hex.toHexString(dataToSend, offset, length));
offset += length;
}
if (!response.endsWith("9000")) {
throw new CardException("Key export to card failed", parseCardStatus(response));
}
}
// Clear array with secret data before we return.
Arrays.fill(dataToSend, (byte) 0);
}
/**
* Return the key id from application specific data stored on tag, or null
* if it doesn't exist.
*
* @param idx Index of the key to return the fingerprint from.
* @return The long key id of the requested key, or null if not found.
*/
public Long nfcGetKeyId(int idx) throws IOException {
byte[] fp = nfcGetFingerprint(idx);
if (fp == null) {
return null;
}
ByteBuffer buf = ByteBuffer.wrap(fp);
// skip first 12 bytes of the fingerprint
buf.position(12);
// the last eight bytes are the key id (big endian, which is default order in ByteBuffer)
return buf.getLong();
}
/**
* Return fingerprints of all keys from application specific data stored
* on tag, or null if data not available.
*
* @return The fingerprints of all subkeys in a contiguous byte array.
*/
public byte[] getFingerprints() throws IOException {
String data = "00CA006E00";
byte[] buf = mTransport.sendAndReceive(Hex.decode(data));
Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
Log.d(Constants.TAG, "nfc tlv data:\n" + tlv.prettyPrint());
Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
if (fptlv == null) {
return null;
}
return fptlv.mV;
}
/**
* Return the PW Status Bytes from the card. This is a simple DO; no TLV decoding needed.
*
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
*/
public byte[] nfcGetPwStatusBytes() throws IOException {
String data = "00CA00C400";
return mTransport.sendAndReceive(Hex.decode(data));
}
/**
* Return the fingerprint from application specific data stored on tag, or
* null if it doesn't exist.
*
* @param idx Index of the key to return the fingerprint from.
* @return The fingerprint of the requested key, or null if not found.
*/
public byte[] nfcGetFingerprint(int idx) throws IOException {
byte[] data = getFingerprints();
// return the master key fingerprint
ByteBuffer fpbuf = ByteBuffer.wrap(data);
byte[] fp = new byte[20];
fpbuf.position(idx * 20);
fpbuf.get(fp, 0, 20);
return fp;
}
public byte[] getAid() throws IOException {
String info = "00CA004F00";
return mTransport.sendAndReceive(Hex.decode(info));
}
public String getUserId() throws IOException {
String info = "00CA006500";
return nfcGetHolderName(nfcCommunicate(info));
}
/**
* Calls to calculate the signature and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
public byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException {
if (!mPw1ValidatedForSignature) {
nfcVerifyPIN(0x81); // (Verify PW1 with mode 81 for signing)
}
// dsi, including Lc
String dsi;
Log.i(Constants.TAG, "Hash: " + hashAlgo);
switch (hashAlgo) {
case HashAlgorithmTags.SHA1:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
}
dsi = "23" // Lc
+ "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
+ "0605" + "2B0E03021A" // OID of SHA1
+ "0500" // TLV coding of ZERO
+ "0414" + getHex(hash); // 0x14 are 20 hash bytes
break;
case HashAlgorithmTags.RIPEMD160:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
}
dsi = "233021300906052B2403020105000414" + getHex(hash);
break;
case HashAlgorithmTags.SHA224:
if (hash.length != 28) {
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
}
dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
break;
case HashAlgorithmTags.SHA256:
if (hash.length != 32) {
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
}
dsi = "333031300D060960864801650304020105000420" + getHex(hash);
break;
case HashAlgorithmTags.SHA384:
if (hash.length != 48) {
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
}
dsi = "433041300D060960864801650304020205000430" + getHex(hash);
break;
case HashAlgorithmTags.SHA512:
if (hash.length != 64) {
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
}
dsi = "533051300D060960864801650304020305000440" + getHex(hash);
break;
default:
throw new IOException("Not supported hash algo!");
}
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
String apdu =
"002A9E9A" // CLA, INS, P1, P2
+ dsi // digital signature input
+ "00"; // Le
String response = nfcCommunicate(apdu);
// split up response into signature and status
String status = response.substring(response.length() - 4);
String signature = response.substring(0, response.length() - 4);
// while we are getting 0x61 status codes, retrieve more data
while (status.substring(0, 2).equals("61")) {
Log.d(Constants.TAG, "requesting more data, status " + status);
// Send GET RESPONSE command
response = nfcCommunicate("00C00000" + status.substring(2));
status = response.substring(response.length() - 4);
signature += response.substring(0, response.length() - 4);
}
Log.d(Constants.TAG, "final response:" + status);
if (!mPw1ValidForMultipleSignatures) {
mPw1ValidatedForSignature = false;
}
if (!"9000".equals(status)) {
throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
}
// Make sure the signature we received is actually the expected number of bytes long!
if (signature.length() != 256 && signature.length() != 512) {
throw new IOException("Bad signature length! Expected 128 or 256 bytes, got " + signature.length() / 2);
}
return Hex.decode(signature);
}
public String nfcGetHolderName(String name) {
String slength;
int ilength;
name = name.substring(6);
slength = name.substring(0, 2);
ilength = Integer.parseInt(slength, 16) * 2;
name = name.substring(2, ilength + 2);
name = (new String(Hex.decode(name))).replace('<', ' ');
return (name);
}
private String nfcGetDataField(String output) {
return output.substring(0, output.length() - 4);
}
public String nfcCommunicate(String apdu) throws IOException, TransportIoException {
return getHex(mTransport.sendAndReceive(Hex.decode(apdu)));
}
public boolean isConnected() {
return mTransport.isConnected();
}
}

View File

@@ -0,0 +1,46 @@
package org.sufficientlysecure.keychain.javacard;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.util.Passphrase;
import java.io.IOException;
public class CachingBaseJavacardDevice extends BaseJavacardDevice {
private byte[] mFingerprintsCache;
private String mUserIdCache;
private byte[] mAidCache;
public CachingBaseJavacardDevice(final Transport mTransport) {
super(mTransport);
}
@Override
public byte[] getFingerprints() throws IOException {
if (mFingerprintsCache == null) {
mFingerprintsCache = super.getFingerprints();
}
return mFingerprintsCache;
}
@Override
public String getUserId() throws IOException {
if (mUserIdCache == null) {
mUserIdCache = super.getUserId();
}
return mUserIdCache;
}
@Override
public byte[] getAid() throws IOException {
if (mAidCache == null) {
mAidCache = super.getAid();
}
return mAidCache;
}
@Override
public void changeKey(final CanonicalizedSecretKey secretKey, final Passphrase passphrase) throws IOException {
super.changeKey(secretKey, passphrase);
mFingerprintsCache = null;
}
}

View File

@@ -0,0 +1,17 @@
package org.sufficientlysecure.keychain.javacard;
import java.io.IOException;
public class CardException extends IOException {
private short mResponseCode;
public CardException(String detailMessage, short responseCode) {
super(detailMessage);
mResponseCode = responseCode;
}
public short getResponseCode() {
return mResponseCode;
}
}

View File

@@ -0,0 +1,65 @@
package org.sufficientlysecure.keychain.javacard;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.util.Passphrase;
import java.io.IOException;
public interface JavacardDevice {
Passphrase getPin();
void setPin(final Passphrase pin);
Passphrase getAdminPin();
void setAdminPin(final Passphrase adminPin);
void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException;
boolean containsKey(KeyType keyType) throws IOException;
boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException;
void connectToDevice() throws IOException;
/**
* Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
* conformance to the card's requirements for key length.
*
* @param pinType For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
* @param newPin The new PW1 or PW3.
*/
void nfcModifyPIN(PinType pinType, byte[] newPin) throws IOException;
/**
* Calls to calculate the signature and returns the MPI value
*
* @param encryptedSessionKey the encoded session key
* @return the decoded session key
*/
byte[] decryptSessionKey(byte[] encryptedSessionKey) throws IOException;
/**
* Return fingerprints of all keys from application specific data stored
* on tag, or null if data not available.
*
* @return The fingerprints of all subkeys in a contiguous byte array.
*/
byte[] getFingerprints() throws IOException;
byte[] getAid() throws IOException;
String getUserId() throws IOException;
boolean isConnected();
/**
* Calls to calculate the signature and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException;
}

View File

@@ -0,0 +1,48 @@
package org.sufficientlysecure.keychain.javacard;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
public enum KeyType {
SIGN(0, 0xB6, 0xCE, 0xC7),
ENCRYPT(1, 0xB8, 0xCF, 0xC8),
AUTH(2, 0xA4, 0xD0, 0xC9),;
private final int mIdx;
private final int mSlot;
private final int mTimestampObjectId;
private final int mFingerprintObjectId;
KeyType(final int idx, final int slot, final int timestampObjectId, final int fingerprintObjectId) {
this.mIdx = idx;
this.mSlot = slot;
this.mTimestampObjectId = timestampObjectId;
this.mFingerprintObjectId = fingerprintObjectId;
}
public static KeyType from(final CanonicalizedSecretKey key) {
if (key.canSign() || key.canCertify()) {
return SIGN;
} else if (key.canEncrypt()) {
return ENCRYPT;
} else if (key.canAuthenticate()) {
return AUTH;
}
return null;
}
public int getIdx() {
return mIdx;
}
public int getmSlot() {
return mSlot;
}
public int getTimestampObjectId() {
return mTimestampObjectId;
}
public int getmFingerprintObjectId() {
return mFingerprintObjectId;
}
}

View File

@@ -0,0 +1,31 @@
package org.sufficientlysecure.keychain.javacard;
import android.nfc.tech.IsoDep;
import java.io.IOException;
public class NfcTransport implements Transport {
// timeout is set to 100 seconds to avoid cancellation during calculation
private static final int TIMEOUT = 100 * 1000;
private final IsoDep mIsoDep;
public NfcTransport(final IsoDep isoDep) throws IOException {
this.mIsoDep = isoDep;
mIsoDep.setTimeout(TIMEOUT);
mIsoDep.connect();
}
@Override
public byte[] sendAndReceive(final byte[] data) throws TransportIoException, IOException {
return mIsoDep.transceive(data);
}
@Override
public void release() {
}
@Override
public boolean isConnected() {
return mIsoDep.isConnected();
}
}

View File

@@ -0,0 +1,7 @@
package org.sufficientlysecure.keychain.javacard;
public class PinException extends CardException {
public PinException(final String detailMessage, final short responseCode) {
super(detailMessage, responseCode);
}
}

View File

@@ -0,0 +1,16 @@
package org.sufficientlysecure.keychain.javacard;
public enum PinType {
BASIC(0x81),
ADMIN(0x83),;
private final int mMode;
PinType(final int mode) {
this.mMode = mode;
}
public int getmMode() {
return mMode;
}
}

View File

@@ -0,0 +1,11 @@
package org.sufficientlysecure.keychain.javacard;
import java.io.IOException;
public interface Transport {
byte[] sendAndReceive(byte[] data) throws IOException;
void release();
boolean isConnected();
}

View File

@@ -0,0 +1,20 @@
package org.sufficientlysecure.keychain.javacard;
import java.io.IOException;
public class TransportIoException extends IOException {
public TransportIoException() {
}
public TransportIoException(final String detailMessage) {
super(detailMessage);
}
public TransportIoException(final String message, final Throwable cause) {
super(message, cause);
}
public TransportIoException(final Throwable cause) {
super(cause);
}
}

View File

@@ -0,0 +1,144 @@
package org.sufficientlysecure.keychain.javacard;
import android.hardware.usb.UsbConstants;
import android.hardware.usb.UsbDevice;
import android.hardware.usb.UsbDeviceConnection;
import android.hardware.usb.UsbEndpoint;
import android.hardware.usb.UsbInterface;
import android.hardware.usb.UsbManager;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.util.Pair;
import org.bouncycastle.util.Arrays;
public class UsbTransport implements Transport {
private static final int CLASS_SMARTCARD = 11;
private static final int TIMEOUT = 1000; // 1 s
private final UsbManager mUsbManager;
private final UsbDevice mUsbDevice;
private final UsbInterface mUsbInterface;
private final UsbEndpoint mBulkIn;
private final UsbEndpoint mBulkOut;
private final UsbDeviceConnection mConnection;
private byte counter = 0;
public UsbTransport(final UsbDevice usbDevice, final UsbManager usbManager) throws TransportIoException {
mUsbDevice = usbDevice;
mUsbManager = usbManager;
mUsbInterface = getSmartCardInterface(mUsbDevice);
// throw if mUsbInterface == null
final Pair<UsbEndpoint, UsbEndpoint> ioEndpoints = getIoEndpoints(mUsbInterface);
mBulkIn = ioEndpoints.first;
mBulkOut = ioEndpoints.second;
// throw if any endpoint is null
mConnection = mUsbManager.openDevice(mUsbDevice);
// throw if connection is null
mConnection.claimInterface(mUsbInterface, true);
// check result
final byte[] iccPowerOn = {
0x62,
0x00, 0x00, 0x00, 0x00,
0x00,
counter++,
0x03,
0x00, 0x00
};
sendRaw(iccPowerOn);
receiveRaw();
// Check result
}
/**
* Get first class 11 (Chip/Smartcard) interface for the device
*
* @param device {@link UsbDevice} which will be searched
* @return {@link UsbInterface} of smartcard or null if it doesn't exist
*/
@Nullable
private static UsbInterface getSmartCardInterface(final UsbDevice device) {
for (int i = 0; i < device.getInterfaceCount(); i++) {
final UsbInterface anInterface = device.getInterface(i);
if (anInterface.getInterfaceClass() == CLASS_SMARTCARD) {
return anInterface;
}
}
return null;
}
@NonNull
private static Pair<UsbEndpoint, UsbEndpoint> getIoEndpoints(final UsbInterface usbInterface) {
UsbEndpoint bulkIn = null, bulkOut = null;
for (int i = 0; i < usbInterface.getEndpointCount(); i++) {
final UsbEndpoint endpoint = usbInterface.getEndpoint(i);
if (endpoint.getType() != UsbConstants.USB_ENDPOINT_XFER_BULK) {
continue;
}
if (endpoint.getDirection() == UsbConstants.USB_DIR_IN) {
bulkIn = endpoint;
} else if (endpoint.getDirection() == UsbConstants.USB_DIR_OUT) {
bulkOut = endpoint;
}
}
return new Pair<>(bulkIn, bulkOut);
}
@Override
public void release() {
mConnection.releaseInterface(mUsbInterface);
mConnection.close();
}
@Override
public boolean isConnected() {
// TODO: redo
return mUsbManager.getDeviceList().containsValue(mUsbDevice);
}
@Override
public byte[] sendAndReceive(final byte[] data) throws TransportIoException {
send(data);
return receive();
}
public void send(final byte[] d) throws TransportIoException {
int l = d.length;
byte[] data = Arrays.concatenate(new byte[]{
0x6f,
(byte) l, (byte) (l >> 8), (byte) (l >> 16), (byte) (l >> 24),
0x00,
counter++,
0x01,
0x00, 0x00},
d);
sendRaw(data);
}
public byte[] receive() throws TransportIoException {
final byte[] bytes = receiveRaw();
return Arrays.copyOfRange(bytes, 10, bytes.length);
}
private void sendRaw(final byte[] data) throws TransportIoException {
final int tr1 = mConnection.bulkTransfer(mBulkOut, data, data.length, TIMEOUT);
if (tr1 != data.length) {
throw new TransportIoException("USB error, failed to send data " + tr1);
}
}
private byte[] receiveRaw() throws TransportIoException {
byte[] buffer = new byte[1024];
int res = mConnection.bulkTransfer(mBulkIn, buffer, buffer.length, TIMEOUT);
if (res < 0) {
throw new TransportIoException("USB error, failed to receive response " + res);
}
return Arrays.copyOfRange(buffer, 0, res);
}
}