Add parts of zxing library to generate qr codes

This commit is contained in:
Dominik Schürmann
2013-10-05 20:43:42 +02:00
parent bef6977aad
commit 05cc2023da
67 changed files with 10307 additions and 1 deletions

View File

@@ -0,0 +1,108 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode;
import com.google.zxing.BarcodeFormat;
import com.google.zxing.EncodeHintType;
import com.google.zxing.Writer;
import com.google.zxing.WriterException;
import com.google.zxing.common.BitMatrix;
import com.google.zxing.qrcode.encoder.ByteMatrix;
import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
import com.google.zxing.qrcode.encoder.Encoder;
import com.google.zxing.qrcode.encoder.QRCode;
import java.util.Hashtable;
/**
* This object renders a QR Code as a BitMatrix 2D array of greyscale values.
*
* @author dswitkin@google.com (Daniel Switkin)
*/
public final class QRCodeWriter implements Writer {
private static final int QUIET_ZONE_SIZE = 0; // patched for Bitcoin Wallet
public BitMatrix encode(String contents, BarcodeFormat format, int width, int height)
throws WriterException {
return encode(contents, format, width, height, null);
}
public BitMatrix encode(String contents, BarcodeFormat format, int width, int height,
Hashtable hints) throws WriterException {
if (contents == null || contents.length() == 0) {
throw new IllegalArgumentException("Found empty contents");
}
if (format != BarcodeFormat.QR_CODE) {
throw new IllegalArgumentException("Can only encode QR_CODE, but got " + format);
}
if (width < 0 || height < 0) {
throw new IllegalArgumentException("Requested dimensions are too small: " + width + 'x' +
height);
}
ErrorCorrectionLevel errorCorrectionLevel = ErrorCorrectionLevel.L;
if (hints != null) {
ErrorCorrectionLevel requestedECLevel = (ErrorCorrectionLevel) hints.get(EncodeHintType.ERROR_CORRECTION);
if (requestedECLevel != null) {
errorCorrectionLevel = requestedECLevel;
}
}
QRCode code = new QRCode();
Encoder.encode(contents, errorCorrectionLevel, hints, code);
return renderResult(code, width, height);
}
// Note that the input matrix uses 0 == white, 1 == black, while the output matrix uses
// 0 == black, 255 == white (i.e. an 8 bit greyscale bitmap).
private static BitMatrix renderResult(QRCode code, int width, int height) {
ByteMatrix input = code.getMatrix();
int inputWidth = input.getWidth();
int inputHeight = input.getHeight();
int qrWidth = inputWidth + (QUIET_ZONE_SIZE << 1);
int qrHeight = inputHeight + (QUIET_ZONE_SIZE << 1);
int outputWidth = Math.max(width, qrWidth);
int outputHeight = Math.max(height, qrHeight);
int multiple = Math.min(outputWidth / qrWidth, outputHeight / qrHeight);
// Padding includes both the quiet zone and the extra white pixels to accommodate the requested
// dimensions. For example, if input is 25x25 the QR will be 33x33 including the quiet zone.
// If the requested size is 200x160, the multiple will be 4, for a QR of 132x132. These will
// handle all the padding from 100x100 (the actual QR) up to 200x160.
int leftPadding = (outputWidth - (inputWidth * multiple)) / 2;
int topPadding = (outputHeight - (inputHeight * multiple)) / 2;
BitMatrix output = new BitMatrix(outputWidth, outputHeight);
for (int inputY = 0, outputY = topPadding; inputY < inputHeight; inputY++, outputY += multiple) {
// Write the contents of this row of the barcode
for (int inputX = 0, outputX = leftPadding; inputX < inputWidth; inputX++, outputX += multiple) {
if (input.get(inputX, inputY) == 1) {
output.setRegion(outputX, outputY, multiple, multiple);
}
}
}
return output;
}
}

View File

@@ -0,0 +1,203 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
import com.google.zxing.FormatException;
import com.google.zxing.common.BitMatrix;
/**
* @author Sean Owen
*/
final class BitMatrixParser {
private final BitMatrix bitMatrix;
private Version parsedVersion;
private FormatInformation parsedFormatInfo;
/**
* @param bitMatrix {@link BitMatrix} to parse
* @throws FormatException if dimension is not >= 21 and 1 mod 4
*/
BitMatrixParser(BitMatrix bitMatrix) throws FormatException {
int dimension = bitMatrix.getHeight();
if (dimension < 21 || (dimension & 0x03) != 1) {
throw FormatException.getFormatInstance();
}
this.bitMatrix = bitMatrix;
}
/**
* <p>Reads format information from one of its two locations within the QR Code.</p>
*
* @return {@link FormatInformation} encapsulating the QR Code's format info
* @throws FormatException if both format information locations cannot be parsed as
* the valid encoding of format information
*/
FormatInformation readFormatInformation() throws FormatException {
if (parsedFormatInfo != null) {
return parsedFormatInfo;
}
// Read top-left format info bits
int formatInfoBits1 = 0;
for (int i = 0; i < 6; i++) {
formatInfoBits1 = copyBit(i, 8, formatInfoBits1);
}
// .. and skip a bit in the timing pattern ...
formatInfoBits1 = copyBit(7, 8, formatInfoBits1);
formatInfoBits1 = copyBit(8, 8, formatInfoBits1);
formatInfoBits1 = copyBit(8, 7, formatInfoBits1);
// .. and skip a bit in the timing pattern ...
for (int j = 5; j >= 0; j--) {
formatInfoBits1 = copyBit(8, j, formatInfoBits1);
}
// Read the top-right/bottom-left pattern too
int dimension = bitMatrix.getHeight();
int formatInfoBits2 = 0;
int jMin = dimension - 7;
for (int j = dimension - 1; j >= jMin; j--) {
formatInfoBits2 = copyBit(8, j, formatInfoBits2);
}
for (int i = dimension - 8; i < dimension; i++) {
formatInfoBits2 = copyBit(i, 8, formatInfoBits2);
}
parsedFormatInfo = FormatInformation.decodeFormatInformation(formatInfoBits1, formatInfoBits2);
if (parsedFormatInfo != null) {
return parsedFormatInfo;
}
throw FormatException.getFormatInstance();
}
/**
* <p>Reads version information from one of its two locations within the QR Code.</p>
*
* @return {@link Version} encapsulating the QR Code's version
* @throws FormatException if both version information locations cannot be parsed as
* the valid encoding of version information
*/
Version readVersion() throws FormatException {
if (parsedVersion != null) {
return parsedVersion;
}
int dimension = bitMatrix.getHeight();
int provisionalVersion = (dimension - 17) >> 2;
if (provisionalVersion <= 6) {
return Version.getVersionForNumber(provisionalVersion);
}
// Read top-right version info: 3 wide by 6 tall
int versionBits = 0;
int ijMin = dimension - 11;
for (int j = 5; j >= 0; j--) {
for (int i = dimension - 9; i >= ijMin; i--) {
versionBits = copyBit(i, j, versionBits);
}
}
parsedVersion = Version.decodeVersionInformation(versionBits);
if (parsedVersion != null && parsedVersion.getDimensionForVersion() == dimension) {
return parsedVersion;
}
// Hmm, failed. Try bottom left: 6 wide by 3 tall
versionBits = 0;
for (int i = 5; i >= 0; i--) {
for (int j = dimension - 9; j >= ijMin; j--) {
versionBits = copyBit(i, j, versionBits);
}
}
parsedVersion = Version.decodeVersionInformation(versionBits);
if (parsedVersion != null && parsedVersion.getDimensionForVersion() == dimension) {
return parsedVersion;
}
throw FormatException.getFormatInstance();
}
private int copyBit(int i, int j, int versionBits) {
return bitMatrix.get(i, j) ? (versionBits << 1) | 0x1 : versionBits << 1;
}
/**
* <p>Reads the bits in the {@link BitMatrix} representing the finder pattern in the
* correct order in order to reconstitute the codewords bytes contained within the
* QR Code.</p>
*
* @return bytes encoded within the QR Code
* @throws FormatException if the exact number of bytes expected is not read
*/
byte[] readCodewords() throws FormatException {
FormatInformation formatInfo = readFormatInformation();
Version version = readVersion();
// Get the data mask for the format used in this QR Code. This will exclude
// some bits from reading as we wind through the bit matrix.
DataMask dataMask = DataMask.forReference((int) formatInfo.getDataMask());
int dimension = bitMatrix.getHeight();
dataMask.unmaskBitMatrix(bitMatrix, dimension);
BitMatrix functionPattern = version.buildFunctionPattern();
boolean readingUp = true;
byte[] result = new byte[version.getTotalCodewords()];
int resultOffset = 0;
int currentByte = 0;
int bitsRead = 0;
// Read columns in pairs, from right to left
for (int j = dimension - 1; j > 0; j -= 2) {
if (j == 6) {
// Skip whole column with vertical alignment pattern;
// saves time and makes the other code proceed more cleanly
j--;
}
// Read alternatingly from bottom to top then top to bottom
for (int count = 0; count < dimension; count++) {
int i = readingUp ? dimension - 1 - count : count;
for (int col = 0; col < 2; col++) {
// Ignore bits covered by the function pattern
if (!functionPattern.get(j - col, i)) {
// Read a bit
bitsRead++;
currentByte <<= 1;
if (bitMatrix.get(j - col, i)) {
currentByte |= 1;
}
// If we've made a whole byte, save it off
if (bitsRead == 8) {
result[resultOffset++] = (byte) currentByte;
bitsRead = 0;
currentByte = 0;
}
}
}
}
readingUp ^= true; // readingUp = !readingUp; // switch directions
}
if (resultOffset != version.getTotalCodewords()) {
throw FormatException.getFormatInstance();
}
return result;
}
}

View File

@@ -0,0 +1,123 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
/**
* <p>Encapsulates a block of data within a QR Code. QR Codes may split their data into
* multiple blocks, each of which is a unit of data and error-correction codewords. Each
* is represented by an instance of this class.</p>
*
* @author Sean Owen
*/
final class DataBlock {
private final int numDataCodewords;
private final byte[] codewords;
private DataBlock(int numDataCodewords, byte[] codewords) {
this.numDataCodewords = numDataCodewords;
this.codewords = codewords;
}
/**
* <p>When QR Codes use multiple data blocks, they are actually interleaved.
* That is, the first byte of data block 1 to n is written, then the second bytes, and so on. This
* method will separate the data into original blocks.</p>
*
* @param rawCodewords bytes as read directly from the QR Code
* @param version version of the QR Code
* @param ecLevel error-correction level of the QR Code
* @return DataBlocks containing original bytes, "de-interleaved" from representation in the
* QR Code
*/
static DataBlock[] getDataBlocks(byte[] rawCodewords,
Version version,
ErrorCorrectionLevel ecLevel) {
if (rawCodewords.length != version.getTotalCodewords()) {
throw new IllegalArgumentException();
}
// Figure out the number and size of data blocks used by this version and
// error correction level
Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
// First count the total number of data blocks
int totalBlocks = 0;
Version.ECB[] ecBlockArray = ecBlocks.getECBlocks();
for (int i = 0; i < ecBlockArray.length; i++) {
totalBlocks += ecBlockArray[i].getCount();
}
// Now establish DataBlocks of the appropriate size and number of data codewords
DataBlock[] result = new DataBlock[totalBlocks];
int numResultBlocks = 0;
for (int j = 0; j < ecBlockArray.length; j++) {
Version.ECB ecBlock = ecBlockArray[j];
for (int i = 0; i < ecBlock.getCount(); i++) {
int numDataCodewords = ecBlock.getDataCodewords();
int numBlockCodewords = ecBlocks.getECCodewordsPerBlock() + numDataCodewords;
result[numResultBlocks++] = new DataBlock(numDataCodewords, new byte[numBlockCodewords]);
}
}
// All blocks have the same amount of data, except that the last n
// (where n may be 0) have 1 more byte. Figure out where these start.
int shorterBlocksTotalCodewords = result[0].codewords.length;
int longerBlocksStartAt = result.length - 1;
while (longerBlocksStartAt >= 0) {
int numCodewords = result[longerBlocksStartAt].codewords.length;
if (numCodewords == shorterBlocksTotalCodewords) {
break;
}
longerBlocksStartAt--;
}
longerBlocksStartAt++;
int shorterBlocksNumDataCodewords = shorterBlocksTotalCodewords - ecBlocks.getECCodewordsPerBlock();
// The last elements of result may be 1 element longer;
// first fill out as many elements as all of them have
int rawCodewordsOffset = 0;
for (int i = 0; i < shorterBlocksNumDataCodewords; i++) {
for (int j = 0; j < numResultBlocks; j++) {
result[j].codewords[i] = rawCodewords[rawCodewordsOffset++];
}
}
// Fill out the last data block in the longer ones
for (int j = longerBlocksStartAt; j < numResultBlocks; j++) {
result[j].codewords[shorterBlocksNumDataCodewords] = rawCodewords[rawCodewordsOffset++];
}
// Now add in error correction blocks
int max = result[0].codewords.length;
for (int i = shorterBlocksNumDataCodewords; i < max; i++) {
for (int j = 0; j < numResultBlocks; j++) {
int iOffset = j < longerBlocksStartAt ? i : i + 1;
result[j].codewords[iOffset] = rawCodewords[rawCodewordsOffset++];
}
}
return result;
}
int getNumDataCodewords() {
return numDataCodewords;
}
byte[] getCodewords() {
return codewords;
}
}

View File

@@ -0,0 +1,155 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
import com.google.zxing.common.BitMatrix;
/**
* <p>Encapsulates data masks for the data bits in a QR code, per ISO 18004:2006 6.8. Implementations
* of this class can un-mask a raw BitMatrix. For simplicity, they will unmask the entire BitMatrix,
* including areas used for finder patterns, timing patterns, etc. These areas should be unused
* after the point they are unmasked anyway.</p>
*
* <p>Note that the diagram in section 6.8.1 is misleading since it indicates that i is column position
* and j is row position. In fact, as the text says, i is row position and j is column position.</p>
*
* @author Sean Owen
*/
abstract class DataMask {
/**
* See ISO 18004:2006 6.8.1
*/
private static final DataMask[] DATA_MASKS = {
new DataMask000(),
new DataMask001(),
new DataMask010(),
new DataMask011(),
new DataMask100(),
new DataMask101(),
new DataMask110(),
new DataMask111(),
};
private DataMask() {
}
/**
* <p>Implementations of this method reverse the data masking process applied to a QR Code and
* make its bits ready to read.</p>
*
* @param bits representation of QR Code bits
* @param dimension dimension of QR Code, represented by bits, being unmasked
*/
final void unmaskBitMatrix(BitMatrix bits, int dimension) {
for (int i = 0; i < dimension; i++) {
for (int j = 0; j < dimension; j++) {
if (isMasked(i, j)) {
bits.flip(j, i);
}
}
}
}
abstract boolean isMasked(int i, int j);
/**
* @param reference a value between 0 and 7 indicating one of the eight possible
* data mask patterns a QR Code may use
* @return DataMask encapsulating the data mask pattern
*/
static DataMask forReference(int reference) {
if (reference < 0 || reference > 7) {
throw new IllegalArgumentException();
}
return DATA_MASKS[reference];
}
/**
* 000: mask bits for which (x + y) mod 2 == 0
*/
private static class DataMask000 extends DataMask {
boolean isMasked(int i, int j) {
return ((i + j) & 0x01) == 0;
}
}
/**
* 001: mask bits for which x mod 2 == 0
*/
private static class DataMask001 extends DataMask {
boolean isMasked(int i, int j) {
return (i & 0x01) == 0;
}
}
/**
* 010: mask bits for which y mod 3 == 0
*/
private static class DataMask010 extends DataMask {
boolean isMasked(int i, int j) {
return j % 3 == 0;
}
}
/**
* 011: mask bits for which (x + y) mod 3 == 0
*/
private static class DataMask011 extends DataMask {
boolean isMasked(int i, int j) {
return (i + j) % 3 == 0;
}
}
/**
* 100: mask bits for which (x/2 + y/3) mod 2 == 0
*/
private static class DataMask100 extends DataMask {
boolean isMasked(int i, int j) {
return (((i >>> 1) + (j /3)) & 0x01) == 0;
}
}
/**
* 101: mask bits for which xy mod 2 + xy mod 3 == 0
*/
private static class DataMask101 extends DataMask {
boolean isMasked(int i, int j) {
int temp = i * j;
return (temp & 0x01) + (temp % 3) == 0;
}
}
/**
* 110: mask bits for which (xy mod 2 + xy mod 3) mod 2 == 0
*/
private static class DataMask110 extends DataMask {
boolean isMasked(int i, int j) {
int temp = i * j;
return (((temp & 0x01) + (temp % 3)) & 0x01) == 0;
}
}
/**
* 111: mask bits for which ((x+y)mod 2 + xy mod 3) mod 2 == 0
*/
private static class DataMask111 extends DataMask {
boolean isMasked(int i, int j) {
return ((((i + j) & 0x01) + ((i * j) % 3)) & 0x01) == 0;
}
}
}

View File

@@ -0,0 +1,322 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
import com.google.zxing.FormatException;
import com.google.zxing.common.BitSource;
import com.google.zxing.common.CharacterSetECI;
import com.google.zxing.common.DecoderResult;
import com.google.zxing.common.StringUtils;
import java.io.UnsupportedEncodingException;
import java.util.Hashtable;
import java.util.Vector;
/**
* <p>QR Codes can encode text as bits in one of several modes, and can use multiple modes
* in one QR Code. This class decodes the bits back into text.</p>
*
* <p>See ISO 18004:2006, 6.4.3 - 6.4.7</p>
*
* @author Sean Owen
*/
final class DecodedBitStreamParser {
/**
* See ISO 18004:2006, 6.4.4 Table 5
*/
private static final char[] ALPHANUMERIC_CHARS = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
' ', '$', '%', '*', '+', '-', '.', '/', ':'
};
private static final int GB2312_SUBSET = 1;
private DecodedBitStreamParser() {
}
static DecoderResult decode(byte[] bytes, Version version, ErrorCorrectionLevel ecLevel, Hashtable hints)
throws FormatException {
BitSource bits = new BitSource(bytes);
StringBuffer result = new StringBuffer(50);
CharacterSetECI currentCharacterSetECI = null;
boolean fc1InEffect = false;
Vector byteSegments = new Vector(1);
Mode mode;
do {
// While still another segment to read...
if (bits.available() < 4) {
// OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
mode = Mode.TERMINATOR;
} else {
try {
mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits
} catch (IllegalArgumentException iae) {
throw FormatException.getFormatInstance();
}
}
if (!mode.equals(Mode.TERMINATOR)) {
if (mode.equals(Mode.FNC1_FIRST_POSITION) || mode.equals(Mode.FNC1_SECOND_POSITION)) {
// We do little with FNC1 except alter the parsed result a bit according to the spec
fc1InEffect = true;
} else if (mode.equals(Mode.STRUCTURED_APPEND)) {
// not really supported; all we do is ignore it
// Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
bits.readBits(16);
} else if (mode.equals(Mode.ECI)) {
// Count doesn't apply to ECI
int value = parseECIValue(bits);
currentCharacterSetECI = CharacterSetECI.getCharacterSetECIByValue(value);
if (currentCharacterSetECI == null) {
throw FormatException.getFormatInstance();
}
} else {
// First handle Hanzi mode which does not start with character count
if (mode.equals(Mode.HANZI)) {
//chinese mode contains a sub set indicator right after mode indicator
int subset = bits.readBits(4);
int countHanzi = bits.readBits(mode.getCharacterCountBits(version));
if (subset == GB2312_SUBSET) {
decodeHanziSegment(bits, result, countHanzi);
}
} else {
// "Normal" QR code modes:
// How many characters will follow, encoded in this mode?
int count = bits.readBits(mode.getCharacterCountBits(version));
if (mode.equals(Mode.NUMERIC)) {
decodeNumericSegment(bits, result, count);
} else if (mode.equals(Mode.ALPHANUMERIC)) {
decodeAlphanumericSegment(bits, result, count, fc1InEffect);
} else if (mode.equals(Mode.BYTE)) {
decodeByteSegment(bits, result, count, currentCharacterSetECI, byteSegments, hints);
} else if (mode.equals(Mode.KANJI)) {
decodeKanjiSegment(bits, result, count);
} else {
throw FormatException.getFormatInstance();
}
}
}
}
} while (!mode.equals(Mode.TERMINATOR));
return new DecoderResult(bytes,
result.toString(),
byteSegments.isEmpty() ? null : byteSegments,
ecLevel == null ? null : ecLevel.toString());
}
/**
* See specification GBT 18284-2000
*/
private static void decodeHanziSegment(BitSource bits,
StringBuffer result,
int count) throws FormatException {
// Don't crash trying to read more bits than we have available.
if (count * 13 > bits.available()) {
throw FormatException.getFormatInstance();
}
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as GB2312 afterwards
byte[] buffer = new byte[2 * count];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits.readBits(13);
int assembledTwoBytes = ((twoBytes / 0x060) << 8) | (twoBytes % 0x060);
if (assembledTwoBytes < 0x003BF) {
// In the 0xA1A1 to 0xAAFE range
assembledTwoBytes += 0x0A1A1;
} else {
// In the 0xB0A1 to 0xFAFE range
assembledTwoBytes += 0x0A6A1;
}
buffer[offset] = (byte) ((assembledTwoBytes >> 8) & 0xFF);
buffer[offset + 1] = (byte) (assembledTwoBytes & 0xFF);
offset += 2;
count--;
}
try {
result.append(new String(buffer, StringUtils.GB2312));
} catch (UnsupportedEncodingException uee) {
throw FormatException.getFormatInstance();
}
}
private static void decodeKanjiSegment(BitSource bits,
StringBuffer result,
int count) throws FormatException {
// Don't crash trying to read more bits than we have available.
if (count * 13 > bits.available()) {
throw FormatException.getFormatInstance();
}
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as Shift_JIS afterwards
byte[] buffer = new byte[2 * count];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits.readBits(13);
int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0);
if (assembledTwoBytes < 0x01F00) {
// In the 0x8140 to 0x9FFC range
assembledTwoBytes += 0x08140;
} else {
// In the 0xE040 to 0xEBBF range
assembledTwoBytes += 0x0C140;
}
buffer[offset] = (byte) (assembledTwoBytes >> 8);
buffer[offset + 1] = (byte) assembledTwoBytes;
offset += 2;
count--;
}
// Shift_JIS may not be supported in some environments:
try {
result.append(new String(buffer, StringUtils.SHIFT_JIS));
} catch (UnsupportedEncodingException uee) {
throw FormatException.getFormatInstance();
}
}
private static void decodeByteSegment(BitSource bits,
StringBuffer result,
int count,
CharacterSetECI currentCharacterSetECI,
Vector byteSegments,
Hashtable hints) throws FormatException {
// Don't crash trying to read more bits than we have available.
if (count << 3 > bits.available()) {
throw FormatException.getFormatInstance();
}
byte[] readBytes = new byte[count];
for (int i = 0; i < count; i++) {
readBytes[i] = (byte) bits.readBits(8);
}
String encoding;
if (currentCharacterSetECI == null) {
// The spec isn't clear on this mode; see
// section 6.4.5: t does not say which encoding to assuming
// upon decoding. I have seen ISO-8859-1 used as well as
// Shift_JIS -- without anything like an ECI designator to
// give a hint.
encoding = StringUtils.guessEncoding(readBytes, hints);
} else {
encoding = currentCharacterSetECI.getEncodingName();
}
try {
result.append(new String(readBytes, encoding));
} catch (UnsupportedEncodingException uce) {
throw FormatException.getFormatInstance();
}
byteSegments.addElement(readBytes);
}
private static char toAlphaNumericChar(int value) throws FormatException {
if (value >= ALPHANUMERIC_CHARS.length) {
throw FormatException.getFormatInstance();
}
return ALPHANUMERIC_CHARS[value];
}
private static void decodeAlphanumericSegment(BitSource bits,
StringBuffer result,
int count,
boolean fc1InEffect) throws FormatException {
// Read two characters at a time
int start = result.length();
while (count > 1) {
int nextTwoCharsBits = bits.readBits(11);
result.append(toAlphaNumericChar(nextTwoCharsBits / 45));
result.append(toAlphaNumericChar(nextTwoCharsBits % 45));
count -= 2;
}
if (count == 1) {
// special case: one character left
result.append(toAlphaNumericChar(bits.readBits(6)));
}
// See section 6.4.8.1, 6.4.8.2
if (fc1InEffect) {
// We need to massage the result a bit if in an FNC1 mode:
for (int i = start; i < result.length(); i++) {
if (result.charAt(i) == '%') {
if (i < result.length() - 1 && result.charAt(i + 1) == '%') {
// %% is rendered as %
result.deleteCharAt(i + 1);
} else {
// In alpha mode, % should be converted to FNC1 separator 0x1D
result.setCharAt(i, (char) 0x1D);
}
}
}
}
}
private static void decodeNumericSegment(BitSource bits,
StringBuffer result,
int count) throws FormatException {
// Read three digits at a time
while (count >= 3) {
// Each 10 bits encodes three digits
int threeDigitsBits = bits.readBits(10);
if (threeDigitsBits >= 1000) {
throw FormatException.getFormatInstance();
}
result.append(toAlphaNumericChar(threeDigitsBits / 100));
result.append(toAlphaNumericChar((threeDigitsBits / 10) % 10));
result.append(toAlphaNumericChar(threeDigitsBits % 10));
count -= 3;
}
if (count == 2) {
// Two digits left over to read, encoded in 7 bits
int twoDigitsBits = bits.readBits(7);
if (twoDigitsBits >= 100) {
throw FormatException.getFormatInstance();
}
result.append(toAlphaNumericChar(twoDigitsBits / 10));
result.append(toAlphaNumericChar(twoDigitsBits % 10));
} else if (count == 1) {
// One digit left over to read
int digitBits = bits.readBits(4);
if (digitBits >= 10) {
throw FormatException.getFormatInstance();
}
result.append(toAlphaNumericChar(digitBits));
}
}
private static int parseECIValue(BitSource bits) {
int firstByte = bits.readBits(8);
if ((firstByte & 0x80) == 0) {
// just one byte
return firstByte & 0x7F;
} else if ((firstByte & 0xC0) == 0x80) {
// two bytes
int secondByte = bits.readBits(8);
return ((firstByte & 0x3F) << 8) | secondByte;
} else if ((firstByte & 0xE0) == 0xC0) {
// three bytes
int secondThirdBytes = bits.readBits(16);
return ((firstByte & 0x1F) << 16) | secondThirdBytes;
}
throw new IllegalArgumentException("Bad ECI bits starting with byte " + firstByte);
}
}

View File

@@ -0,0 +1,86 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
/**
* <p>See ISO 18004:2006, 6.5.1. This enum encapsulates the four error correction levels
* defined by the QR code standard.</p>
*
* @author Sean Owen
*/
public final class ErrorCorrectionLevel {
// No, we can't use an enum here. J2ME doesn't support it.
/**
* L = ~7% correction
*/
public static final ErrorCorrectionLevel L = new ErrorCorrectionLevel(0, 0x01, "L");
/**
* M = ~15% correction
*/
public static final ErrorCorrectionLevel M = new ErrorCorrectionLevel(1, 0x00, "M");
/**
* Q = ~25% correction
*/
public static final ErrorCorrectionLevel Q = new ErrorCorrectionLevel(2, 0x03, "Q");
/**
* H = ~30% correction
*/
public static final ErrorCorrectionLevel H = new ErrorCorrectionLevel(3, 0x02, "H");
private static final ErrorCorrectionLevel[] FOR_BITS = {M, L, H, Q};
private final int ordinal;
private final int bits;
private final String name;
private ErrorCorrectionLevel(int ordinal, int bits, String name) {
this.ordinal = ordinal;
this.bits = bits;
this.name = name;
}
public int ordinal() {
return ordinal;
}
public int getBits() {
return bits;
}
public String getName() {
return name;
}
public String toString() {
return name;
}
/**
* @param bits int containing the two bits encoding a QR Code's error correction level
* @return ErrorCorrectionLevel representing the encoded error correction level
*/
public static ErrorCorrectionLevel forBits(int bits) {
if (bits < 0 || bits >= FOR_BITS.length) {
throw new IllegalArgumentException();
}
return FOR_BITS[bits];
}
}

View File

@@ -0,0 +1,171 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
/**
* <p>Encapsulates a QR Code's format information, including the data mask used and
* error correction level.</p>
*
* @author Sean Owen
* @see DataMask
* @see ErrorCorrectionLevel
*/
final class FormatInformation {
private static final int FORMAT_INFO_MASK_QR = 0x5412;
/**
* See ISO 18004:2006, Annex C, Table C.1
*/
private static final int[][] FORMAT_INFO_DECODE_LOOKUP = {
{0x5412, 0x00},
{0x5125, 0x01},
{0x5E7C, 0x02},
{0x5B4B, 0x03},
{0x45F9, 0x04},
{0x40CE, 0x05},
{0x4F97, 0x06},
{0x4AA0, 0x07},
{0x77C4, 0x08},
{0x72F3, 0x09},
{0x7DAA, 0x0A},
{0x789D, 0x0B},
{0x662F, 0x0C},
{0x6318, 0x0D},
{0x6C41, 0x0E},
{0x6976, 0x0F},
{0x1689, 0x10},
{0x13BE, 0x11},
{0x1CE7, 0x12},
{0x19D0, 0x13},
{0x0762, 0x14},
{0x0255, 0x15},
{0x0D0C, 0x16},
{0x083B, 0x17},
{0x355F, 0x18},
{0x3068, 0x19},
{0x3F31, 0x1A},
{0x3A06, 0x1B},
{0x24B4, 0x1C},
{0x2183, 0x1D},
{0x2EDA, 0x1E},
{0x2BED, 0x1F},
};
/**
* Offset i holds the number of 1 bits in the binary representation of i
*/
private static final int[] BITS_SET_IN_HALF_BYTE =
{0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
private final ErrorCorrectionLevel errorCorrectionLevel;
private final byte dataMask;
private FormatInformation(int formatInfo) {
// Bits 3,4
errorCorrectionLevel = ErrorCorrectionLevel.forBits((formatInfo >> 3) & 0x03);
// Bottom 3 bits
dataMask = (byte) (formatInfo & 0x07);
}
static int numBitsDiffering(int a, int b) {
a ^= b; // a now has a 1 bit exactly where its bit differs with b's
// Count bits set quickly with a series of lookups:
return BITS_SET_IN_HALF_BYTE[a & 0x0F] +
BITS_SET_IN_HALF_BYTE[(a >>> 4 & 0x0F)] +
BITS_SET_IN_HALF_BYTE[(a >>> 8 & 0x0F)] +
BITS_SET_IN_HALF_BYTE[(a >>> 12 & 0x0F)] +
BITS_SET_IN_HALF_BYTE[(a >>> 16 & 0x0F)] +
BITS_SET_IN_HALF_BYTE[(a >>> 20 & 0x0F)] +
BITS_SET_IN_HALF_BYTE[(a >>> 24 & 0x0F)] +
BITS_SET_IN_HALF_BYTE[(a >>> 28 & 0x0F)];
}
/**
* @param maskedFormatInfo1 format info indicator, with mask still applied
* @param maskedFormatInfo2 second copy of same info; both are checked at the same time
* to establish best match
* @return information about the format it specifies, or <code>null</code>
* if doesn't seem to match any known pattern
*/
static FormatInformation decodeFormatInformation(int maskedFormatInfo1, int maskedFormatInfo2) {
FormatInformation formatInfo = doDecodeFormatInformation(maskedFormatInfo1, maskedFormatInfo2);
if (formatInfo != null) {
return formatInfo;
}
// Should return null, but, some QR codes apparently
// do not mask this info. Try again by actually masking the pattern
// first
return doDecodeFormatInformation(maskedFormatInfo1 ^ FORMAT_INFO_MASK_QR,
maskedFormatInfo2 ^ FORMAT_INFO_MASK_QR);
}
private static FormatInformation doDecodeFormatInformation(int maskedFormatInfo1, int maskedFormatInfo2) {
// Find the int in FORMAT_INFO_DECODE_LOOKUP with fewest bits differing
int bestDifference = Integer.MAX_VALUE;
int bestFormatInfo = 0;
for (int i = 0; i < FORMAT_INFO_DECODE_LOOKUP.length; i++) {
int[] decodeInfo = FORMAT_INFO_DECODE_LOOKUP[i];
int targetInfo = decodeInfo[0];
if (targetInfo == maskedFormatInfo1 || targetInfo == maskedFormatInfo2) {
// Found an exact match
return new FormatInformation(decodeInfo[1]);
}
int bitsDifference = numBitsDiffering(maskedFormatInfo1, targetInfo);
if (bitsDifference < bestDifference) {
bestFormatInfo = decodeInfo[1];
bestDifference = bitsDifference;
}
if (maskedFormatInfo1 != maskedFormatInfo2) {
// also try the other option
bitsDifference = numBitsDiffering(maskedFormatInfo2, targetInfo);
if (bitsDifference < bestDifference) {
bestFormatInfo = decodeInfo[1];
bestDifference = bitsDifference;
}
}
}
// Hamming distance of the 32 masked codes is 7, by construction, so <= 3 bits
// differing means we found a match
if (bestDifference <= 3) {
return new FormatInformation(bestFormatInfo);
}
return null;
}
ErrorCorrectionLevel getErrorCorrectionLevel() {
return errorCorrectionLevel;
}
byte getDataMask() {
return dataMask;
}
public int hashCode() {
return (errorCorrectionLevel.ordinal() << 3) | (int) dataMask;
}
public boolean equals(Object o) {
if (!(o instanceof FormatInformation)) {
return false;
}
FormatInformation other = (FormatInformation) o;
return this.errorCorrectionLevel == other.errorCorrectionLevel &&
this.dataMask == other.dataMask;
}
}

View File

@@ -0,0 +1,117 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
/**
* <p>See ISO 18004:2006, 6.4.1, Tables 2 and 3. This enum encapsulates the various modes in which
* data can be encoded to bits in the QR code standard.</p>
*
* @author Sean Owen
*/
public final class Mode {
// No, we can't use an enum here. J2ME doesn't support it.
public static final Mode TERMINATOR = new Mode(new int[]{0, 0, 0}, 0x00, "TERMINATOR"); // Not really a mode...
public static final Mode NUMERIC = new Mode(new int[]{10, 12, 14}, 0x01, "NUMERIC");
public static final Mode ALPHANUMERIC = new Mode(new int[]{9, 11, 13}, 0x02, "ALPHANUMERIC");
public static final Mode STRUCTURED_APPEND = new Mode(new int[]{0, 0, 0}, 0x03, "STRUCTURED_APPEND"); // Not supported
public static final Mode BYTE = new Mode(new int[]{8, 16, 16}, 0x04, "BYTE");
public static final Mode ECI = new Mode(null, 0x07, "ECI"); // character counts don't apply
public static final Mode KANJI = new Mode(new int[]{8, 10, 12}, 0x08, "KANJI");
public static final Mode FNC1_FIRST_POSITION = new Mode(null, 0x05, "FNC1_FIRST_POSITION");
public static final Mode FNC1_SECOND_POSITION = new Mode(null, 0x09, "FNC1_SECOND_POSITION");
/** See GBT 18284-2000; "Hanzi" is a transliteration of this mode name. */
public static final Mode HANZI = new Mode(new int[]{8, 10, 12}, 0x0D, "HANZI");
private final int[] characterCountBitsForVersions;
private final int bits;
private final String name;
private Mode(int[] characterCountBitsForVersions, int bits, String name) {
this.characterCountBitsForVersions = characterCountBitsForVersions;
this.bits = bits;
this.name = name;
}
/**
* @param bits four bits encoding a QR Code data mode
* @return Mode encoded by these bits
* @throws IllegalArgumentException if bits do not correspond to a known mode
*/
public static Mode forBits(int bits) {
switch (bits) {
case 0x0:
return TERMINATOR;
case 0x1:
return NUMERIC;
case 0x2:
return ALPHANUMERIC;
case 0x3:
return STRUCTURED_APPEND;
case 0x4:
return BYTE;
case 0x5:
return FNC1_FIRST_POSITION;
case 0x7:
return ECI;
case 0x8:
return KANJI;
case 0x9:
return FNC1_SECOND_POSITION;
case 0xD:
// 0xD is defined in GBT 18284-2000, may not be supported in foreign country
return HANZI;
default:
throw new IllegalArgumentException();
}
}
/**
* @param version version in question
* @return number of bits used, in this QR Code symbol {@link Version}, to encode the
* count of characters that will follow encoded in this Mode
*/
public int getCharacterCountBits(Version version) {
if (characterCountBitsForVersions == null) {
throw new IllegalArgumentException("Character count doesn't apply to this mode");
}
int number = version.getVersionNumber();
int offset;
if (number <= 9) {
offset = 0;
} else if (number <= 26) {
offset = 1;
} else {
offset = 2;
}
return characterCountBitsForVersions[offset];
}
public int getBits() {
return bits;
}
public String getName() {
return name;
}
public String toString() {
return name;
}
}

View File

@@ -0,0 +1,586 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.decoder;
import com.google.zxing.FormatException;
import com.google.zxing.common.BitMatrix;
/**
* See ISO 18004:2006 Annex D
*
* @author Sean Owen
*/
public final class Version {
/**
* See ISO 18004:2006 Annex D.
* Element i represents the raw version bits that specify version i + 7
*/
private static final int[] VERSION_DECODE_INFO = {
0x07C94, 0x085BC, 0x09A99, 0x0A4D3, 0x0BBF6,
0x0C762, 0x0D847, 0x0E60D, 0x0F928, 0x10B78,
0x1145D, 0x12A17, 0x13532, 0x149A6, 0x15683,
0x168C9, 0x177EC, 0x18EC4, 0x191E1, 0x1AFAB,
0x1B08E, 0x1CC1A, 0x1D33F, 0x1ED75, 0x1F250,
0x209D5, 0x216F0, 0x228BA, 0x2379F, 0x24B0B,
0x2542E, 0x26A64, 0x27541, 0x28C69
};
private static final Version[] VERSIONS = buildVersions();
private final int versionNumber;
private final int[] alignmentPatternCenters;
private final ECBlocks[] ecBlocks;
private final int totalCodewords;
private Version(int versionNumber,
int[] alignmentPatternCenters,
ECBlocks ecBlocks1,
ECBlocks ecBlocks2,
ECBlocks ecBlocks3,
ECBlocks ecBlocks4) {
this.versionNumber = versionNumber;
this.alignmentPatternCenters = alignmentPatternCenters;
this.ecBlocks = new ECBlocks[]{ecBlocks1, ecBlocks2, ecBlocks3, ecBlocks4};
int total = 0;
int ecCodewords = ecBlocks1.getECCodewordsPerBlock();
ECB[] ecbArray = ecBlocks1.getECBlocks();
for (int i = 0; i < ecbArray.length; i++) {
ECB ecBlock = ecbArray[i];
total += ecBlock.getCount() * (ecBlock.getDataCodewords() + ecCodewords);
}
this.totalCodewords = total;
}
public int getVersionNumber() {
return versionNumber;
}
public int[] getAlignmentPatternCenters() {
return alignmentPatternCenters;
}
public int getTotalCodewords() {
return totalCodewords;
}
public int getDimensionForVersion() {
return 17 + 4 * versionNumber;
}
public ECBlocks getECBlocksForLevel(ErrorCorrectionLevel ecLevel) {
return ecBlocks[ecLevel.ordinal()];
}
/**
* <p>Deduces version information purely from QR Code dimensions.</p>
*
* @param dimension dimension in modules
* @return Version for a QR Code of that dimension
* @throws FormatException if dimension is not 1 mod 4
*/
public static Version getProvisionalVersionForDimension(int dimension) throws FormatException {
if (dimension % 4 != 1) {
throw FormatException.getFormatInstance();
}
try {
return getVersionForNumber((dimension - 17) >> 2);
} catch (IllegalArgumentException iae) {
throw FormatException.getFormatInstance();
}
}
public static Version getVersionForNumber(int versionNumber) {
if (versionNumber < 1 || versionNumber > 40) {
throw new IllegalArgumentException();
}
return VERSIONS[versionNumber - 1];
}
static Version decodeVersionInformation(int versionBits) {
int bestDifference = Integer.MAX_VALUE;
int bestVersion = 0;
for (int i = 0; i < VERSION_DECODE_INFO.length; i++) {
int targetVersion = VERSION_DECODE_INFO[i];
// Do the version info bits match exactly? done.
if (targetVersion == versionBits) {
return getVersionForNumber(i + 7);
}
// Otherwise see if this is the closest to a real version info bit string
// we have seen so far
int bitsDifference = FormatInformation.numBitsDiffering(versionBits, targetVersion);
if (bitsDifference < bestDifference) {
bestVersion = i + 7;
bestDifference = bitsDifference;
}
}
// We can tolerate up to 3 bits of error since no two version info codewords will
// differ in less than 8 bits.
if (bestDifference <= 3) {
return getVersionForNumber(bestVersion);
}
// If we didn't find a close enough match, fail
return null;
}
/**
* See ISO 18004:2006 Annex E
*/
BitMatrix buildFunctionPattern() {
int dimension = getDimensionForVersion();
BitMatrix bitMatrix = new BitMatrix(dimension);
// Top left finder pattern + separator + format
bitMatrix.setRegion(0, 0, 9, 9);
// Top right finder pattern + separator + format
bitMatrix.setRegion(dimension - 8, 0, 8, 9);
// Bottom left finder pattern + separator + format
bitMatrix.setRegion(0, dimension - 8, 9, 8);
// Alignment patterns
int max = alignmentPatternCenters.length;
for (int x = 0; x < max; x++) {
int i = alignmentPatternCenters[x] - 2;
for (int y = 0; y < max; y++) {
if ((x == 0 && (y == 0 || y == max - 1)) || (x == max - 1 && y == 0)) {
// No alignment patterns near the three finder paterns
continue;
}
bitMatrix.setRegion(alignmentPatternCenters[y] - 2, i, 5, 5);
}
}
// Vertical timing pattern
bitMatrix.setRegion(6, 9, 1, dimension - 17);
// Horizontal timing pattern
bitMatrix.setRegion(9, 6, dimension - 17, 1);
if (versionNumber > 6) {
// Version info, top right
bitMatrix.setRegion(dimension - 11, 0, 3, 6);
// Version info, bottom left
bitMatrix.setRegion(0, dimension - 11, 6, 3);
}
return bitMatrix;
}
/**
* <p>Encapsulates a set of error-correction blocks in one symbol version. Most versions will
* use blocks of differing sizes within one version, so, this encapsulates the parameters for
* each set of blocks. It also holds the number of error-correction codewords per block since it
* will be the same across all blocks within one version.</p>
*/
public static final class ECBlocks {
private final int ecCodewordsPerBlock;
private final ECB[] ecBlocks;
ECBlocks(int ecCodewordsPerBlock, ECB ecBlocks) {
this.ecCodewordsPerBlock = ecCodewordsPerBlock;
this.ecBlocks = new ECB[]{ecBlocks};
}
ECBlocks(int ecCodewordsPerBlock, ECB ecBlocks1, ECB ecBlocks2) {
this.ecCodewordsPerBlock = ecCodewordsPerBlock;
this.ecBlocks = new ECB[]{ecBlocks1, ecBlocks2};
}
public int getECCodewordsPerBlock() {
return ecCodewordsPerBlock;
}
public int getNumBlocks() {
int total = 0;
for (int i = 0; i < ecBlocks.length; i++) {
total += ecBlocks[i].getCount();
}
return total;
}
public int getTotalECCodewords() {
return ecCodewordsPerBlock * getNumBlocks();
}
public ECB[] getECBlocks() {
return ecBlocks;
}
}
/**
* <p>Encapsualtes the parameters for one error-correction block in one symbol version.
* This includes the number of data codewords, and the number of times a block with these
* parameters is used consecutively in the QR code version's format.</p>
*/
public static final class ECB {
private final int count;
private final int dataCodewords;
ECB(int count, int dataCodewords) {
this.count = count;
this.dataCodewords = dataCodewords;
}
public int getCount() {
return count;
}
public int getDataCodewords() {
return dataCodewords;
}
}
public String toString() {
return String.valueOf(versionNumber);
}
/**
* See ISO 18004:2006 6.5.1 Table 9
*/
private static Version[] buildVersions() {
return new Version[]{
new Version(1, new int[]{},
new ECBlocks(7, new ECB(1, 19)),
new ECBlocks(10, new ECB(1, 16)),
new ECBlocks(13, new ECB(1, 13)),
new ECBlocks(17, new ECB(1, 9))),
new Version(2, new int[]{6, 18},
new ECBlocks(10, new ECB(1, 34)),
new ECBlocks(16, new ECB(1, 28)),
new ECBlocks(22, new ECB(1, 22)),
new ECBlocks(28, new ECB(1, 16))),
new Version(3, new int[]{6, 22},
new ECBlocks(15, new ECB(1, 55)),
new ECBlocks(26, new ECB(1, 44)),
new ECBlocks(18, new ECB(2, 17)),
new ECBlocks(22, new ECB(2, 13))),
new Version(4, new int[]{6, 26},
new ECBlocks(20, new ECB(1, 80)),
new ECBlocks(18, new ECB(2, 32)),
new ECBlocks(26, new ECB(2, 24)),
new ECBlocks(16, new ECB(4, 9))),
new Version(5, new int[]{6, 30},
new ECBlocks(26, new ECB(1, 108)),
new ECBlocks(24, new ECB(2, 43)),
new ECBlocks(18, new ECB(2, 15),
new ECB(2, 16)),
new ECBlocks(22, new ECB(2, 11),
new ECB(2, 12))),
new Version(6, new int[]{6, 34},
new ECBlocks(18, new ECB(2, 68)),
new ECBlocks(16, new ECB(4, 27)),
new ECBlocks(24, new ECB(4, 19)),
new ECBlocks(28, new ECB(4, 15))),
new Version(7, new int[]{6, 22, 38},
new ECBlocks(20, new ECB(2, 78)),
new ECBlocks(18, new ECB(4, 31)),
new ECBlocks(18, new ECB(2, 14),
new ECB(4, 15)),
new ECBlocks(26, new ECB(4, 13),
new ECB(1, 14))),
new Version(8, new int[]{6, 24, 42},
new ECBlocks(24, new ECB(2, 97)),
new ECBlocks(22, new ECB(2, 38),
new ECB(2, 39)),
new ECBlocks(22, new ECB(4, 18),
new ECB(2, 19)),
new ECBlocks(26, new ECB(4, 14),
new ECB(2, 15))),
new Version(9, new int[]{6, 26, 46},
new ECBlocks(30, new ECB(2, 116)),
new ECBlocks(22, new ECB(3, 36),
new ECB(2, 37)),
new ECBlocks(20, new ECB(4, 16),
new ECB(4, 17)),
new ECBlocks(24, new ECB(4, 12),
new ECB(4, 13))),
new Version(10, new int[]{6, 28, 50},
new ECBlocks(18, new ECB(2, 68),
new ECB(2, 69)),
new ECBlocks(26, new ECB(4, 43),
new ECB(1, 44)),
new ECBlocks(24, new ECB(6, 19),
new ECB(2, 20)),
new ECBlocks(28, new ECB(6, 15),
new ECB(2, 16))),
new Version(11, new int[]{6, 30, 54},
new ECBlocks(20, new ECB(4, 81)),
new ECBlocks(30, new ECB(1, 50),
new ECB(4, 51)),
new ECBlocks(28, new ECB(4, 22),
new ECB(4, 23)),
new ECBlocks(24, new ECB(3, 12),
new ECB(8, 13))),
new Version(12, new int[]{6, 32, 58},
new ECBlocks(24, new ECB(2, 92),
new ECB(2, 93)),
new ECBlocks(22, new ECB(6, 36),
new ECB(2, 37)),
new ECBlocks(26, new ECB(4, 20),
new ECB(6, 21)),
new ECBlocks(28, new ECB(7, 14),
new ECB(4, 15))),
new Version(13, new int[]{6, 34, 62},
new ECBlocks(26, new ECB(4, 107)),
new ECBlocks(22, new ECB(8, 37),
new ECB(1, 38)),
new ECBlocks(24, new ECB(8, 20),
new ECB(4, 21)),
new ECBlocks(22, new ECB(12, 11),
new ECB(4, 12))),
new Version(14, new int[]{6, 26, 46, 66},
new ECBlocks(30, new ECB(3, 115),
new ECB(1, 116)),
new ECBlocks(24, new ECB(4, 40),
new ECB(5, 41)),
new ECBlocks(20, new ECB(11, 16),
new ECB(5, 17)),
new ECBlocks(24, new ECB(11, 12),
new ECB(5, 13))),
new Version(15, new int[]{6, 26, 48, 70},
new ECBlocks(22, new ECB(5, 87),
new ECB(1, 88)),
new ECBlocks(24, new ECB(5, 41),
new ECB(5, 42)),
new ECBlocks(30, new ECB(5, 24),
new ECB(7, 25)),
new ECBlocks(24, new ECB(11, 12),
new ECB(7, 13))),
new Version(16, new int[]{6, 26, 50, 74},
new ECBlocks(24, new ECB(5, 98),
new ECB(1, 99)),
new ECBlocks(28, new ECB(7, 45),
new ECB(3, 46)),
new ECBlocks(24, new ECB(15, 19),
new ECB(2, 20)),
new ECBlocks(30, new ECB(3, 15),
new ECB(13, 16))),
new Version(17, new int[]{6, 30, 54, 78},
new ECBlocks(28, new ECB(1, 107),
new ECB(5, 108)),
new ECBlocks(28, new ECB(10, 46),
new ECB(1, 47)),
new ECBlocks(28, new ECB(1, 22),
new ECB(15, 23)),
new ECBlocks(28, new ECB(2, 14),
new ECB(17, 15))),
new Version(18, new int[]{6, 30, 56, 82},
new ECBlocks(30, new ECB(5, 120),
new ECB(1, 121)),
new ECBlocks(26, new ECB(9, 43),
new ECB(4, 44)),
new ECBlocks(28, new ECB(17, 22),
new ECB(1, 23)),
new ECBlocks(28, new ECB(2, 14),
new ECB(19, 15))),
new Version(19, new int[]{6, 30, 58, 86},
new ECBlocks(28, new ECB(3, 113),
new ECB(4, 114)),
new ECBlocks(26, new ECB(3, 44),
new ECB(11, 45)),
new ECBlocks(26, new ECB(17, 21),
new ECB(4, 22)),
new ECBlocks(26, new ECB(9, 13),
new ECB(16, 14))),
new Version(20, new int[]{6, 34, 62, 90},
new ECBlocks(28, new ECB(3, 107),
new ECB(5, 108)),
new ECBlocks(26, new ECB(3, 41),
new ECB(13, 42)),
new ECBlocks(30, new ECB(15, 24),
new ECB(5, 25)),
new ECBlocks(28, new ECB(15, 15),
new ECB(10, 16))),
new Version(21, new int[]{6, 28, 50, 72, 94},
new ECBlocks(28, new ECB(4, 116),
new ECB(4, 117)),
new ECBlocks(26, new ECB(17, 42)),
new ECBlocks(28, new ECB(17, 22),
new ECB(6, 23)),
new ECBlocks(30, new ECB(19, 16),
new ECB(6, 17))),
new Version(22, new int[]{6, 26, 50, 74, 98},
new ECBlocks(28, new ECB(2, 111),
new ECB(7, 112)),
new ECBlocks(28, new ECB(17, 46)),
new ECBlocks(30, new ECB(7, 24),
new ECB(16, 25)),
new ECBlocks(24, new ECB(34, 13))),
new Version(23, new int[]{6, 30, 54, 78, 102},
new ECBlocks(30, new ECB(4, 121),
new ECB(5, 122)),
new ECBlocks(28, new ECB(4, 47),
new ECB(14, 48)),
new ECBlocks(30, new ECB(11, 24),
new ECB(14, 25)),
new ECBlocks(30, new ECB(16, 15),
new ECB(14, 16))),
new Version(24, new int[]{6, 28, 54, 80, 106},
new ECBlocks(30, new ECB(6, 117),
new ECB(4, 118)),
new ECBlocks(28, new ECB(6, 45),
new ECB(14, 46)),
new ECBlocks(30, new ECB(11, 24),
new ECB(16, 25)),
new ECBlocks(30, new ECB(30, 16),
new ECB(2, 17))),
new Version(25, new int[]{6, 32, 58, 84, 110},
new ECBlocks(26, new ECB(8, 106),
new ECB(4, 107)),
new ECBlocks(28, new ECB(8, 47),
new ECB(13, 48)),
new ECBlocks(30, new ECB(7, 24),
new ECB(22, 25)),
new ECBlocks(30, new ECB(22, 15),
new ECB(13, 16))),
new Version(26, new int[]{6, 30, 58, 86, 114},
new ECBlocks(28, new ECB(10, 114),
new ECB(2, 115)),
new ECBlocks(28, new ECB(19, 46),
new ECB(4, 47)),
new ECBlocks(28, new ECB(28, 22),
new ECB(6, 23)),
new ECBlocks(30, new ECB(33, 16),
new ECB(4, 17))),
new Version(27, new int[]{6, 34, 62, 90, 118},
new ECBlocks(30, new ECB(8, 122),
new ECB(4, 123)),
new ECBlocks(28, new ECB(22, 45),
new ECB(3, 46)),
new ECBlocks(30, new ECB(8, 23),
new ECB(26, 24)),
new ECBlocks(30, new ECB(12, 15),
new ECB(28, 16))),
new Version(28, new int[]{6, 26, 50, 74, 98, 122},
new ECBlocks(30, new ECB(3, 117),
new ECB(10, 118)),
new ECBlocks(28, new ECB(3, 45),
new ECB(23, 46)),
new ECBlocks(30, new ECB(4, 24),
new ECB(31, 25)),
new ECBlocks(30, new ECB(11, 15),
new ECB(31, 16))),
new Version(29, new int[]{6, 30, 54, 78, 102, 126},
new ECBlocks(30, new ECB(7, 116),
new ECB(7, 117)),
new ECBlocks(28, new ECB(21, 45),
new ECB(7, 46)),
new ECBlocks(30, new ECB(1, 23),
new ECB(37, 24)),
new ECBlocks(30, new ECB(19, 15),
new ECB(26, 16))),
new Version(30, new int[]{6, 26, 52, 78, 104, 130},
new ECBlocks(30, new ECB(5, 115),
new ECB(10, 116)),
new ECBlocks(28, new ECB(19, 47),
new ECB(10, 48)),
new ECBlocks(30, new ECB(15, 24),
new ECB(25, 25)),
new ECBlocks(30, new ECB(23, 15),
new ECB(25, 16))),
new Version(31, new int[]{6, 30, 56, 82, 108, 134},
new ECBlocks(30, new ECB(13, 115),
new ECB(3, 116)),
new ECBlocks(28, new ECB(2, 46),
new ECB(29, 47)),
new ECBlocks(30, new ECB(42, 24),
new ECB(1, 25)),
new ECBlocks(30, new ECB(23, 15),
new ECB(28, 16))),
new Version(32, new int[]{6, 34, 60, 86, 112, 138},
new ECBlocks(30, new ECB(17, 115)),
new ECBlocks(28, new ECB(10, 46),
new ECB(23, 47)),
new ECBlocks(30, new ECB(10, 24),
new ECB(35, 25)),
new ECBlocks(30, new ECB(19, 15),
new ECB(35, 16))),
new Version(33, new int[]{6, 30, 58, 86, 114, 142},
new ECBlocks(30, new ECB(17, 115),
new ECB(1, 116)),
new ECBlocks(28, new ECB(14, 46),
new ECB(21, 47)),
new ECBlocks(30, new ECB(29, 24),
new ECB(19, 25)),
new ECBlocks(30, new ECB(11, 15),
new ECB(46, 16))),
new Version(34, new int[]{6, 34, 62, 90, 118, 146},
new ECBlocks(30, new ECB(13, 115),
new ECB(6, 116)),
new ECBlocks(28, new ECB(14, 46),
new ECB(23, 47)),
new ECBlocks(30, new ECB(44, 24),
new ECB(7, 25)),
new ECBlocks(30, new ECB(59, 16),
new ECB(1, 17))),
new Version(35, new int[]{6, 30, 54, 78, 102, 126, 150},
new ECBlocks(30, new ECB(12, 121),
new ECB(7, 122)),
new ECBlocks(28, new ECB(12, 47),
new ECB(26, 48)),
new ECBlocks(30, new ECB(39, 24),
new ECB(14, 25)),
new ECBlocks(30, new ECB(22, 15),
new ECB(41, 16))),
new Version(36, new int[]{6, 24, 50, 76, 102, 128, 154},
new ECBlocks(30, new ECB(6, 121),
new ECB(14, 122)),
new ECBlocks(28, new ECB(6, 47),
new ECB(34, 48)),
new ECBlocks(30, new ECB(46, 24),
new ECB(10, 25)),
new ECBlocks(30, new ECB(2, 15),
new ECB(64, 16))),
new Version(37, new int[]{6, 28, 54, 80, 106, 132, 158},
new ECBlocks(30, new ECB(17, 122),
new ECB(4, 123)),
new ECBlocks(28, new ECB(29, 46),
new ECB(14, 47)),
new ECBlocks(30, new ECB(49, 24),
new ECB(10, 25)),
new ECBlocks(30, new ECB(24, 15),
new ECB(46, 16))),
new Version(38, new int[]{6, 32, 58, 84, 110, 136, 162},
new ECBlocks(30, new ECB(4, 122),
new ECB(18, 123)),
new ECBlocks(28, new ECB(13, 46),
new ECB(32, 47)),
new ECBlocks(30, new ECB(48, 24),
new ECB(14, 25)),
new ECBlocks(30, new ECB(42, 15),
new ECB(32, 16))),
new Version(39, new int[]{6, 26, 54, 82, 110, 138, 166},
new ECBlocks(30, new ECB(20, 117),
new ECB(4, 118)),
new ECBlocks(28, new ECB(40, 47),
new ECB(7, 48)),
new ECBlocks(30, new ECB(43, 24),
new ECB(22, 25)),
new ECBlocks(30, new ECB(10, 15),
new ECB(67, 16))),
new Version(40, new int[]{6, 30, 58, 86, 114, 142, 170},
new ECBlocks(30, new ECB(19, 118),
new ECB(6, 119)),
new ECBlocks(28, new ECB(18, 47),
new ECB(31, 48)),
new ECBlocks(30, new ECB(34, 24),
new ECB(34, 25)),
new ECBlocks(30, new ECB(20, 15),
new ECB(61, 16)))
};
}
}

View File

@@ -0,0 +1,48 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.detector;
import com.google.zxing.ResultPoint;
/**
* <p>Encapsulates an alignment pattern, which are the smaller square patterns found in
* all but the simplest QR Codes.</p>
*
* @author Sean Owen
*/
public final class AlignmentPattern extends ResultPoint {
private final float estimatedModuleSize;
AlignmentPattern(float posX, float posY, float estimatedModuleSize) {
super(posX, posY);
this.estimatedModuleSize = estimatedModuleSize;
}
/**
* <p>Determines if this alignment pattern "about equals" an alignment pattern at the stated
* position and size -- meaning, it is at nearly the same center with nearly the same size.</p>
*/
boolean aboutEquals(float moduleSize, float i, float j) {
if (Math.abs(i - getY()) <= moduleSize && Math.abs(j - getX()) <= moduleSize) {
float moduleSizeDiff = Math.abs(moduleSize - estimatedModuleSize);
return moduleSizeDiff <= 1.0f || moduleSizeDiff / estimatedModuleSize <= 1.0f;
}
return false;
}
}

View File

@@ -0,0 +1,279 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.detector;
import com.google.zxing.NotFoundException;
import com.google.zxing.ResultPoint;
import com.google.zxing.ResultPointCallback;
import com.google.zxing.common.BitMatrix;
import java.util.Vector;
/**
* <p>This class attempts to find alignment patterns in a QR Code. Alignment patterns look like finder
* patterns but are smaller and appear at regular intervals throughout the image.</p>
*
* <p>At the moment this only looks for the bottom-right alignment pattern.</p>
*
* <p>This is mostly a simplified copy of {@link FinderPatternFinder}. It is copied,
* pasted and stripped down here for maximum performance but does unfortunately duplicate
* some code.</p>
*
* <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.
*
* @author Sean Owen
*/
final class AlignmentPatternFinder {
private final BitMatrix image;
private final Vector possibleCenters;
private final int startX;
private final int startY;
private final int width;
private final int height;
private final float moduleSize;
private final int[] crossCheckStateCount;
private final ResultPointCallback resultPointCallback;
/**
* <p>Creates a finder that will look in a portion of the whole image.</p>
*
* @param image image to search
* @param startX left column from which to start searching
* @param startY top row from which to start searching
* @param width width of region to search
* @param height height of region to search
* @param moduleSize estimated module size so far
*/
AlignmentPatternFinder(BitMatrix image,
int startX,
int startY,
int width,
int height,
float moduleSize,
ResultPointCallback resultPointCallback) {
this.image = image;
this.possibleCenters = new Vector(5);
this.startX = startX;
this.startY = startY;
this.width = width;
this.height = height;
this.moduleSize = moduleSize;
this.crossCheckStateCount = new int[3];
this.resultPointCallback = resultPointCallback;
}
/**
* <p>This method attempts to find the bottom-right alignment pattern in the image. It is a bit messy since
* it's pretty performance-critical and so is written to be fast foremost.</p>
*
* @return {@link AlignmentPattern} if found
* @throws NotFoundException if not found
*/
AlignmentPattern find() throws NotFoundException {
int startX = this.startX;
int height = this.height;
int maxJ = startX + width;
int middleI = startY + (height >> 1);
// We are looking for black/white/black modules in 1:1:1 ratio;
// this tracks the number of black/white/black modules seen so far
int[] stateCount = new int[3];
for (int iGen = 0; iGen < height; iGen++) {
// Search from middle outwards
int i = middleI + ((iGen & 0x01) == 0 ? (iGen + 1) >> 1 : -((iGen + 1) >> 1));
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
int j = startX;
// Burn off leading white pixels before anything else; if we start in the middle of
// a white run, it doesn't make sense to count its length, since we don't know if the
// white run continued to the left of the start point
while (j < maxJ && !image.get(j, i)) {
j++;
}
int currentState = 0;
while (j < maxJ) {
if (image.get(j, i)) {
// Black pixel
if (currentState == 1) { // Counting black pixels
stateCount[currentState]++;
} else { // Counting white pixels
if (currentState == 2) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, j);
if (confirmed != null) {
return confirmed;
}
}
stateCount[0] = stateCount[2];
stateCount[1] = 1;
stateCount[2] = 0;
currentState = 1;
} else {
stateCount[++currentState]++;
}
}
} else { // White pixel
if (currentState == 1) { // Counting black pixels
currentState++;
}
stateCount[currentState]++;
}
j++;
}
if (foundPatternCross(stateCount)) {
AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, maxJ);
if (confirmed != null) {
return confirmed;
}
}
}
// Hmm, nothing we saw was observed and confirmed twice. If we had
// any guess at all, return it.
if (!possibleCenters.isEmpty()) {
return (AlignmentPattern) possibleCenters.elementAt(0);
}
throw NotFoundException.getNotFoundInstance();
}
/**
* Given a count of black/white/black pixels just seen and an end position,
* figures the location of the center of this black/white/black run.
*/
private static float centerFromEnd(int[] stateCount, int end) {
return (float) (end - stateCount[2]) - stateCount[1] / 2.0f;
}
/**
* @param stateCount count of black/white/black pixels just read
* @return true iff the proportions of the counts is close enough to the 1/1/1 ratios
* used by alignment patterns to be considered a match
*/
private boolean foundPatternCross(int[] stateCount) {
float moduleSize = this.moduleSize;
float maxVariance = moduleSize / 2.0f;
for (int i = 0; i < 3; i++) {
if (Math.abs(moduleSize - stateCount[i]) >= maxVariance) {
return false;
}
}
return true;
}
/**
* <p>After a horizontal scan finds a potential alignment pattern, this method
* "cross-checks" by scanning down vertically through the center of the possible
* alignment pattern to see if the same proportion is detected.</p>
*
* @param startI row where an alignment pattern was detected
* @param centerJ center of the section that appears to cross an alignment pattern
* @param maxCount maximum reasonable number of modules that should be
* observed in any reading state, based on the results of the horizontal scan
* @return vertical center of alignment pattern, or {@link Float#NaN} if not found
*/
private float crossCheckVertical(int startI, int centerJ, int maxCount,
int originalStateCountTotal) {
BitMatrix image = this.image;
int maxI = image.getHeight();
int[] stateCount = crossCheckStateCount;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
// Start counting up from center
int i = startI;
while (i >= 0 && image.get(centerJ, i) && stateCount[1] <= maxCount) {
stateCount[1]++;
i--;
}
// If already too many modules in this state or ran off the edge:
if (i < 0 || stateCount[1] > maxCount) {
return Float.NaN;
}
while (i >= 0 && !image.get(centerJ, i) && stateCount[0] <= maxCount) {
stateCount[0]++;
i--;
}
if (stateCount[0] > maxCount) {
return Float.NaN;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image.get(centerJ, i) && stateCount[1] <= maxCount) {
stateCount[1]++;
i++;
}
if (i == maxI || stateCount[1] > maxCount) {
return Float.NaN;
}
while (i < maxI && !image.get(centerJ, i) && stateCount[2] <= maxCount) {
stateCount[2]++;
i++;
}
if (stateCount[2] > maxCount) {
return Float.NaN;
}
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2];
if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) {
return Float.NaN;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : Float.NaN;
}
/**
* <p>This is called when a horizontal scan finds a possible alignment pattern. It will
* cross check with a vertical scan, and if successful, will see if this pattern had been
* found on a previous horizontal scan. If so, we consider it confirmed and conclude we have
* found the alignment pattern.</p>
*
* @param stateCount reading state module counts from horizontal scan
* @param i row where alignment pattern may be found
* @param j end of possible alignment pattern in row
* @return {@link AlignmentPattern} if we have found the same pattern twice, or null if not
*/
private AlignmentPattern handlePossibleCenter(int[] stateCount, int i, int j) {
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2];
float centerJ = centerFromEnd(stateCount, j);
float centerI = crossCheckVertical(i, (int) centerJ, 2 * stateCount[1], stateCountTotal);
if (!Float.isNaN(centerI)) {
float estimatedModuleSize = (float) (stateCount[0] + stateCount[1] + stateCount[2]) / 3.0f;
int max = possibleCenters.size();
for (int index = 0; index < max; index++) {
AlignmentPattern center = (AlignmentPattern) possibleCenters.elementAt(index);
// Look for about the same center and module size:
if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) {
return new AlignmentPattern(centerJ, centerI, estimatedModuleSize);
}
}
// Hadn't found this before; save it
ResultPoint point = new AlignmentPattern(centerJ, centerI, estimatedModuleSize);
possibleCenters.addElement(point);
if (resultPointCallback != null) {
resultPointCallback.foundPossibleResultPoint(point);
}
}
return null;
}
}

View File

@@ -0,0 +1,406 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.detector;
import com.google.zxing.DecodeHintType;
import com.google.zxing.FormatException;
import com.google.zxing.NotFoundException;
import com.google.zxing.ResultPoint;
import com.google.zxing.ResultPointCallback;
import com.google.zxing.common.BitMatrix;
import com.google.zxing.common.DetectorResult;
import com.google.zxing.common.GridSampler;
import com.google.zxing.common.PerspectiveTransform;
import com.google.zxing.qrcode.decoder.Version;
import java.util.Hashtable;
/**
* <p>Encapsulates logic that can detect a QR Code in an image, even if the QR Code
* is rotated or skewed, or partially obscured.</p>
*
* @author Sean Owen
*/
public class Detector {
private final BitMatrix image;
private ResultPointCallback resultPointCallback;
public Detector(BitMatrix image) {
this.image = image;
}
protected BitMatrix getImage() {
return image;
}
protected ResultPointCallback getResultPointCallback() {
return resultPointCallback;
}
/**
* <p>Detects a QR Code in an image, simply.</p>
*
* @return {@link DetectorResult} encapsulating results of detecting a QR Code
* @throws NotFoundException if no QR Code can be found
*/
public DetectorResult detect() throws NotFoundException, FormatException {
return detect(null);
}
/**
* <p>Detects a QR Code in an image, simply.</p>
*
* @param hints optional hints to detector
* @return {@link NotFoundException} encapsulating results of detecting a QR Code
* @throws NotFoundException if QR Code cannot be found
* @throws FormatException if a QR Code cannot be decoded
*/
public DetectorResult detect(Hashtable hints) throws NotFoundException, FormatException {
resultPointCallback = hints == null ? null :
(ResultPointCallback) hints.get(DecodeHintType.NEED_RESULT_POINT_CALLBACK);
FinderPatternFinder finder = new FinderPatternFinder(image, resultPointCallback);
FinderPatternInfo info = finder.find(hints);
return processFinderPatternInfo(info);
}
protected DetectorResult processFinderPatternInfo(FinderPatternInfo info)
throws NotFoundException, FormatException {
FinderPattern topLeft = info.getTopLeft();
FinderPattern topRight = info.getTopRight();
FinderPattern bottomLeft = info.getBottomLeft();
float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft);
if (moduleSize < 1.0f) {
throw NotFoundException.getNotFoundInstance();
}
int dimension = computeDimension(topLeft, topRight, bottomLeft, moduleSize);
Version provisionalVersion = Version.getProvisionalVersionForDimension(dimension);
int modulesBetweenFPCenters = provisionalVersion.getDimensionForVersion() - 7;
AlignmentPattern alignmentPattern = null;
// Anything above version 1 has an alignment pattern
if (provisionalVersion.getAlignmentPatternCenters().length > 0) {
// Guess where a "bottom right" finder pattern would have been
float bottomRightX = topRight.getX() - topLeft.getX() + bottomLeft.getX();
float bottomRightY = topRight.getY() - topLeft.getY() + bottomLeft.getY();
// Estimate that alignment pattern is closer by 3 modules
// from "bottom right" to known top left location
float correctionToTopLeft = 1.0f - 3.0f / (float) modulesBetweenFPCenters;
int estAlignmentX = (int) (topLeft.getX() + correctionToTopLeft * (bottomRightX - topLeft.getX()));
int estAlignmentY = (int) (topLeft.getY() + correctionToTopLeft * (bottomRightY - topLeft.getY()));
// Kind of arbitrary -- expand search radius before giving up
for (int i = 4; i <= 16; i <<= 1) {
try {
alignmentPattern = findAlignmentInRegion(moduleSize,
estAlignmentX,
estAlignmentY,
(float) i);
break;
} catch (NotFoundException re) {
// try next round
}
}
// If we didn't find alignment pattern... well try anyway without it
}
PerspectiveTransform transform =
createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension);
BitMatrix bits = sampleGrid(image, transform, dimension);
ResultPoint[] points;
if (alignmentPattern == null) {
points = new ResultPoint[]{bottomLeft, topLeft, topRight};
} else {
points = new ResultPoint[]{bottomLeft, topLeft, topRight, alignmentPattern};
}
return new DetectorResult(bits, points);
}
public static PerspectiveTransform createTransform(ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft,
ResultPoint alignmentPattern,
int dimension) {
float dimMinusThree = (float) dimension - 3.5f;
float bottomRightX;
float bottomRightY;
float sourceBottomRightX;
float sourceBottomRightY;
if (alignmentPattern != null) {
bottomRightX = alignmentPattern.getX();
bottomRightY = alignmentPattern.getY();
sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0f;
} else {
// Don't have an alignment pattern, just make up the bottom-right point
bottomRightX = (topRight.getX() - topLeft.getX()) + bottomLeft.getX();
bottomRightY = (topRight.getY() - topLeft.getY()) + bottomLeft.getY();
sourceBottomRightX = sourceBottomRightY = dimMinusThree;
}
return PerspectiveTransform.quadrilateralToQuadrilateral(
3.5f,
3.5f,
dimMinusThree,
3.5f,
sourceBottomRightX,
sourceBottomRightY,
3.5f,
dimMinusThree,
topLeft.getX(),
topLeft.getY(),
topRight.getX(),
topRight.getY(),
bottomRightX,
bottomRightY,
bottomLeft.getX(),
bottomLeft.getY());
}
private static BitMatrix sampleGrid(BitMatrix image,
PerspectiveTransform transform,
int dimension) throws NotFoundException {
GridSampler sampler = GridSampler.getInstance();
return sampler.sampleGrid(image, dimension, dimension, transform);
}
/**
* <p>Computes the dimension (number of modules on a size) of the QR Code based on the position
* of the finder patterns and estimated module size.</p>
*/
protected static int computeDimension(ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft,
float moduleSize) throws NotFoundException {
int tltrCentersDimension = round(ResultPoint.distance(topLeft, topRight) / moduleSize);
int tlblCentersDimension = round(ResultPoint.distance(topLeft, bottomLeft) / moduleSize);
int dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7;
switch (dimension & 0x03) { // mod 4
case 0:
dimension++;
break;
// 1? do nothing
case 2:
dimension--;
break;
case 3:
throw NotFoundException.getNotFoundInstance();
}
return dimension;
}
/**
* <p>Computes an average estimated module size based on estimated derived from the positions
* of the three finder patterns.</p>
*/
protected float calculateModuleSize(ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft) {
// Take the average
return (calculateModuleSizeOneWay(topLeft, topRight) +
calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f;
}
/**
* <p>Estimates module size based on two finder patterns -- it uses
* {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the
* width of each, measuring along the axis between their centers.</p>
*/
private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) {
float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int) pattern.getX(),
(int) pattern.getY(),
(int) otherPattern.getX(),
(int) otherPattern.getY());
float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int) otherPattern.getX(),
(int) otherPattern.getY(),
(int) pattern.getX(),
(int) pattern.getY());
if (Float.isNaN(moduleSizeEst1)) {
return moduleSizeEst2 / 7.0f;
}
if (Float.isNaN(moduleSizeEst2)) {
return moduleSizeEst1 / 7.0f;
}
// Average them, and divide by 7 since we've counted the width of 3 black modules,
// and 1 white and 1 black module on either side. Ergo, divide sum by 14.
return (moduleSizeEst1 + moduleSizeEst2) / 14.0f;
}
/**
* See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of
* a finder pattern by looking for a black-white-black run from the center in the direction
* of another point (another finder pattern center), and in the opposite direction too.</p>
*/
private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) {
float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY);
// Now count other way -- don't run off image though of course
float scale = 1.0f;
int otherToX = fromX - (toX - fromX);
if (otherToX < 0) {
scale = (float) fromX / (float) (fromX - otherToX);
otherToX = 0;
} else if (otherToX > image.getWidth()) {
scale = (float) (image.getWidth() - fromX) / (float) (otherToX - fromX);
otherToX = image.getWidth();
}
int otherToY = (int) (fromY - (toY - fromY) * scale);
scale = 1.0f;
if (otherToY < 0) {
scale = (float) fromY / (float) (fromY - otherToY);
otherToY = 0;
} else if (otherToY > image.getHeight()) {
scale = (float) (image.getHeight() - fromY) / (float) (otherToY - fromY);
otherToY = image.getHeight();
}
otherToX = (int) (fromX + (otherToX - fromX) * scale);
result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY);
return result;
}
/**
* <p>This method traces a line from a point in the image, in the direction towards another point.
* It begins in a black region, and keeps going until it finds white, then black, then white again.
* It reports the distance from the start to this point.</p>
*
* <p>This is used when figuring out how wide a finder pattern is, when the finder pattern
* may be skewed or rotated.</p>
*/
private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) {
// Mild variant of Bresenham's algorithm;
// see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
boolean steep = Math.abs(toY - fromY) > Math.abs(toX - fromX);
if (steep) {
int temp = fromX;
fromX = fromY;
fromY = temp;
temp = toX;
toX = toY;
toY = temp;
}
int dx = Math.abs(toX - fromX);
int dy = Math.abs(toY - fromY);
int error = -dx >> 1;
int xstep = fromX < toX ? 1 : -1;
int ystep = fromY < toY ? 1 : -1;
// In black pixels, looking for white, first or second time.
int state = 0;
for (int x = fromX, y = fromY; x != toX; x += xstep) {
int realX = steep ? y : x;
int realY = steep ? x : y;
// In white pixels, looking for black.
// FIXME(dswitkin): This method seems to assume square images, which can cause these calls to
// BitMatrix.get() to throw ArrayIndexOutOfBoundsException.
if (state == 1) {
if (image.get(realX, realY)) {
state++;
}
} else {
if (!image.get(realX, realY)) {
state++;
}
}
// Found black, white, black, and stumbled back onto white, so we're done.
if (state == 3) {
int diffX = x - fromX;
int diffY = y - fromY;
if (xstep < 0) {
diffX++;
}
return (float) Math.sqrt((double) (diffX * diffX + diffY * diffY));
}
error += dy;
if (error > 0) {
if (y == toY) {
break;
}
y += ystep;
error -= dx;
}
}
int diffX = toX - fromX;
int diffY = toY - fromY;
return (float) Math.sqrt((double) (diffX * diffX + diffY * diffY));
}
/**
* <p>Attempts to locate an alignment pattern in a limited region of the image, which is
* guessed to contain it. This method uses {@link AlignmentPattern}.</p>
*
* @param overallEstModuleSize estimated module size so far
* @param estAlignmentX x coordinate of center of area probably containing alignment pattern
* @param estAlignmentY y coordinate of above
* @param allowanceFactor number of pixels in all directions to search from the center
* @return {@link AlignmentPattern} if found, or null otherwise
* @throws NotFoundException if an unexpected error occurs during detection
*/
protected AlignmentPattern findAlignmentInRegion(float overallEstModuleSize,
int estAlignmentX,
int estAlignmentY,
float allowanceFactor)
throws NotFoundException {
// Look for an alignment pattern (3 modules in size) around where it
// should be
int allowance = (int) (allowanceFactor * overallEstModuleSize);
int alignmentAreaLeftX = Math.max(0, estAlignmentX - allowance);
int alignmentAreaRightX = Math.min(image.getWidth() - 1, estAlignmentX + allowance);
if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) {
throw NotFoundException.getNotFoundInstance();
}
int alignmentAreaTopY = Math.max(0, estAlignmentY - allowance);
int alignmentAreaBottomY = Math.min(image.getHeight() - 1, estAlignmentY + allowance);
if (alignmentAreaBottomY - alignmentAreaTopY < overallEstModuleSize * 3) {
throw NotFoundException.getNotFoundInstance();
}
AlignmentPatternFinder alignmentFinder =
new AlignmentPatternFinder(
image,
alignmentAreaLeftX,
alignmentAreaTopY,
alignmentAreaRightX - alignmentAreaLeftX,
alignmentAreaBottomY - alignmentAreaTopY,
overallEstModuleSize,
resultPointCallback);
return alignmentFinder.find();
}
/**
* Ends up being a bit faster than Math.round(). This merely rounds its argument to the nearest int,
* where x.5 rounds up.
*/
private static int round(float d) {
return (int) (d + 0.5f);
}
}

View File

@@ -0,0 +1,63 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.detector;
import com.google.zxing.ResultPoint;
/**
* <p>Encapsulates a finder pattern, which are the three square patterns found in
* the corners of QR Codes. It also encapsulates a count of similar finder patterns,
* as a convenience to the finder's bookkeeping.</p>
*
* @author Sean Owen
*/
public final class FinderPattern extends ResultPoint {
private final float estimatedModuleSize;
private int count;
FinderPattern(float posX, float posY, float estimatedModuleSize) {
super(posX, posY);
this.estimatedModuleSize = estimatedModuleSize;
this.count = 1;
}
public float getEstimatedModuleSize() {
return estimatedModuleSize;
}
int getCount() {
return count;
}
void incrementCount() {
this.count++;
}
/**
* <p>Determines if this finder pattern "about equals" a finder pattern at the stated
* position and size -- meaning, it is at nearly the same center with nearly the same size.</p>
*/
boolean aboutEquals(float moduleSize, float i, float j) {
if (Math.abs(i - getY()) <= moduleSize && Math.abs(j - getX()) <= moduleSize) {
float moduleSizeDiff = Math.abs(moduleSize - estimatedModuleSize);
return moduleSizeDiff <= 1.0f || moduleSizeDiff / estimatedModuleSize <= 1.0f;
}
return false;
}
}

View File

@@ -0,0 +1,585 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.detector;
import com.google.zxing.DecodeHintType;
import com.google.zxing.NotFoundException;
import com.google.zxing.ResultPoint;
import com.google.zxing.ResultPointCallback;
import com.google.zxing.common.BitMatrix;
import com.google.zxing.common.Collections;
import com.google.zxing.common.Comparator;
import java.util.Hashtable;
import java.util.Vector;
/**
* <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square
* markers at three corners of a QR Code.</p>
*
* <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.
*
* @author Sean Owen
*/
public class FinderPatternFinder {
private static final int CENTER_QUORUM = 2;
protected static final int MIN_SKIP = 3; // 1 pixel/module times 3 modules/center
protected static final int MAX_MODULES = 57; // support up to version 10 for mobile clients
private static final int INTEGER_MATH_SHIFT = 8;
private final BitMatrix image;
private final Vector possibleCenters;
private boolean hasSkipped;
private final int[] crossCheckStateCount;
private final ResultPointCallback resultPointCallback;
/**
* <p>Creates a finder that will search the image for three finder patterns.</p>
*
* @param image image to search
*/
public FinderPatternFinder(BitMatrix image) {
this(image, null);
}
public FinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) {
this.image = image;
this.possibleCenters = new Vector();
this.crossCheckStateCount = new int[5];
this.resultPointCallback = resultPointCallback;
}
protected BitMatrix getImage() {
return image;
}
protected Vector getPossibleCenters() {
return possibleCenters;
}
FinderPatternInfo find(Hashtable hints) throws NotFoundException {
boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER);
int maxI = image.getHeight();
int maxJ = image.getWidth();
// We are looking for black/white/black/white/black modules in
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
// Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
// image, and then account for the center being 3 modules in size. This gives the smallest
// number of pixels the center could be, so skip this often. When trying harder, look for all
// QR versions regardless of how dense they are.
int iSkip = (3 * maxI) / (4 * MAX_MODULES);
if (iSkip < MIN_SKIP || tryHarder) {
iSkip = MIN_SKIP;
}
boolean done = false;
int[] stateCount = new int[5];
for (int i = iSkip - 1; i < maxI && !done; i += iSkip) {
// Get a row of black/white values
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
int currentState = 0;
for (int j = 0; j < maxJ; j++) {
if (image.get(j, i)) {
// Black pixel
if ((currentState & 1) == 1) { // Counting white pixels
currentState++;
}
stateCount[currentState]++;
} else { // White pixel
if ((currentState & 1) == 0) { // Counting black pixels
if (currentState == 4) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
boolean confirmed = handlePossibleCenter(stateCount, i, j);
if (confirmed) {
// Start examining every other line. Checking each line turned out to be too
// expensive and didn't improve performance.
iSkip = 2;
if (hasSkipped) {
done = haveMultiplyConfirmedCenters();
} else {
int rowSkip = findRowSkip();
if (rowSkip > stateCount[2]) {
// Skip rows between row of lower confirmed center
// and top of presumed third confirmed center
// but back up a bit to get a full chance of detecting
// it, entire width of center of finder pattern
// Skip by rowSkip, but back off by stateCount[2] (size of last center
// of pattern we saw) to be conservative, and also back off by iSkip which
// is about to be re-added
i += rowSkip - stateCount[2] - iSkip;
j = maxJ - 1;
}
}
} else {
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
continue;
}
// Clear state to start looking again
currentState = 0;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
} else { // No, shift counts back by two
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
}
} else {
stateCount[++currentState]++;
}
} else { // Counting white pixels
stateCount[currentState]++;
}
}
}
if (foundPatternCross(stateCount)) {
boolean confirmed = handlePossibleCenter(stateCount, i, maxJ);
if (confirmed) {
iSkip = stateCount[0];
if (hasSkipped) {
// Found a third one
done = haveMultiplyConfirmedCenters();
}
}
}
}
FinderPattern[] patternInfo = selectBestPatterns();
ResultPoint.orderBestPatterns(patternInfo);
return new FinderPatternInfo(patternInfo);
}
/**
* Given a count of black/white/black/white/black pixels just seen and an end position,
* figures the location of the center of this run.
*/
private static float centerFromEnd(int[] stateCount, int end) {
return (float) (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;
}
/**
* @param stateCount count of black/white/black/white/black pixels just read
* @return true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios
* used by finder patterns to be considered a match
*/
protected static boolean foundPatternCross(int[] stateCount) {
int totalModuleSize = 0;
for (int i = 0; i < 5; i++) {
int count = stateCount[i];
if (count == 0) {
return false;
}
totalModuleSize += count;
}
if (totalModuleSize < 7) {
return false;
}
int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7;
int maxVariance = moduleSize / 2;
// Allow less than 50% variance from 1-1-3-1-1 proportions
return Math.abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance &&
Math.abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance &&
Math.abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance &&
Math.abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance &&
Math.abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance;
}
private int[] getCrossCheckStateCount() {
crossCheckStateCount[0] = 0;
crossCheckStateCount[1] = 0;
crossCheckStateCount[2] = 0;
crossCheckStateCount[3] = 0;
crossCheckStateCount[4] = 0;
return crossCheckStateCount;
}
/**
* <p>After a horizontal scan finds a potential finder pattern, this method
* "cross-checks" by scanning down vertically through the center of the possible
* finder pattern to see if the same proportion is detected.</p>
*
* @param startI row where a finder pattern was detected
* @param centerJ center of the section that appears to cross a finder pattern
* @param maxCount maximum reasonable number of modules that should be
* observed in any reading state, based on the results of the horizontal scan
* @return vertical center of finder pattern, or {@link Float#NaN} if not found
*/
private float crossCheckVertical(int startI, int centerJ, int maxCount,
int originalStateCountTotal) {
BitMatrix image = this.image;
int maxI = image.getHeight();
int[] stateCount = getCrossCheckStateCount();
// Start counting up from center
int i = startI;
while (i >= 0 && image.get(centerJ, i)) {
stateCount[2]++;
i--;
}
if (i < 0) {
return Float.NaN;
}
while (i >= 0 && !image.get(centerJ, i) && stateCount[1] <= maxCount) {
stateCount[1]++;
i--;
}
// If already too many modules in this state or ran off the edge:
if (i < 0 || stateCount[1] > maxCount) {
return Float.NaN;
}
while (i >= 0 && image.get(centerJ, i) && stateCount[0] <= maxCount) {
stateCount[0]++;
i--;
}
if (stateCount[0] > maxCount) {
return Float.NaN;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image.get(centerJ, i)) {
stateCount[2]++;
i++;
}
if (i == maxI) {
return Float.NaN;
}
while (i < maxI && !image.get(centerJ, i) && stateCount[3] < maxCount) {
stateCount[3]++;
i++;
}
if (i == maxI || stateCount[3] >= maxCount) {
return Float.NaN;
}
while (i < maxI && image.get(centerJ, i) && stateCount[4] < maxCount) {
stateCount[4]++;
i++;
}
if (stateCount[4] >= maxCount) {
return Float.NaN;
}
// If we found a finder-pattern-like section, but its size is more than 40% different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
stateCount[4];
if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) {
return Float.NaN;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : Float.NaN;
}
/**
* <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical,
* except it reads horizontally instead of vertically. This is used to cross-cross
* check a vertical cross check and locate the real center of the alignment pattern.</p>
*/
private float crossCheckHorizontal(int startJ, int centerI, int maxCount,
int originalStateCountTotal) {
BitMatrix image = this.image;
int maxJ = image.getWidth();
int[] stateCount = getCrossCheckStateCount();
int j = startJ;
while (j >= 0 && image.get(j, centerI)) {
stateCount[2]++;
j--;
}
if (j < 0) {
return Float.NaN;
}
while (j >= 0 && !image.get(j, centerI) && stateCount[1] <= maxCount) {
stateCount[1]++;
j--;
}
if (j < 0 || stateCount[1] > maxCount) {
return Float.NaN;
}
while (j >= 0 && image.get(j, centerI) && stateCount[0] <= maxCount) {
stateCount[0]++;
j--;
}
if (stateCount[0] > maxCount) {
return Float.NaN;
}
j = startJ + 1;
while (j < maxJ && image.get(j, centerI)) {
stateCount[2]++;
j++;
}
if (j == maxJ) {
return Float.NaN;
}
while (j < maxJ && !image.get(j, centerI) && stateCount[3] < maxCount) {
stateCount[3]++;
j++;
}
if (j == maxJ || stateCount[3] >= maxCount) {
return Float.NaN;
}
while (j < maxJ && image.get(j, centerI) && stateCount[4] < maxCount) {
stateCount[4]++;
j++;
}
if (stateCount[4] >= maxCount) {
return Float.NaN;
}
// If we found a finder-pattern-like section, but its size is significantly different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
stateCount[4];
if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) {
return Float.NaN;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : Float.NaN;
}
/**
* <p>This is called when a horizontal scan finds a possible alignment pattern. It will
* cross check with a vertical scan, and if successful, will, ah, cross-cross-check
* with another horizontal scan. This is needed primarily to locate the real horizontal
* center of the pattern in cases of extreme skew.</p>
*
* <p>If that succeeds the finder pattern location is added to a list that tracks
* the number of times each location has been nearly-matched as a finder pattern.
* Each additional find is more evidence that the location is in fact a finder
* pattern center
*
* @param stateCount reading state module counts from horizontal scan
* @param i row where finder pattern may be found
* @param j end of possible finder pattern in row
* @return true if a finder pattern candidate was found this time
*/
protected boolean handlePossibleCenter(int[] stateCount, int i, int j) {
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
stateCount[4];
float centerJ = centerFromEnd(stateCount, j);
float centerI = crossCheckVertical(i, (int) centerJ, stateCount[2], stateCountTotal);
if (!Float.isNaN(centerI)) {
// Re-cross check
centerJ = crossCheckHorizontal((int) centerJ, (int) centerI, stateCount[2], stateCountTotal);
if (!Float.isNaN(centerJ)) {
float estimatedModuleSize = (float) stateCountTotal / 7.0f;
boolean found = false;
int max = possibleCenters.size();
for (int index = 0; index < max; index++) {
FinderPattern center = (FinderPattern) possibleCenters.elementAt(index);
// Look for about the same center and module size:
if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) {
center.incrementCount();
found = true;
break;
}
}
if (!found) {
ResultPoint point = new FinderPattern(centerJ, centerI, estimatedModuleSize);
possibleCenters.addElement(point);
if (resultPointCallback != null) {
resultPointCallback.foundPossibleResultPoint(point);
}
}
return true;
}
}
return false;
}
/**
* @return number of rows we could safely skip during scanning, based on the first
* two finder patterns that have been located. In some cases their position will
* allow us to infer that the third pattern must lie below a certain point farther
* down in the image.
*/
private int findRowSkip() {
int max = possibleCenters.size();
if (max <= 1) {
return 0;
}
FinderPattern firstConfirmedCenter = null;
for (int i = 0; i < max; i++) {
FinderPattern center = (FinderPattern) possibleCenters.elementAt(i);
if (center.getCount() >= CENTER_QUORUM) {
if (firstConfirmedCenter == null) {
firstConfirmedCenter = center;
} else {
// We have two confirmed centers
// How far down can we skip before resuming looking for the next
// pattern? In the worst case, only the difference between the
// difference in the x / y coordinates of the two centers.
// This is the case where you find top left last.
hasSkipped = true;
return (int) (Math.abs(firstConfirmedCenter.getX() - center.getX()) -
Math.abs(firstConfirmedCenter.getY() - center.getY())) / 2;
}
}
}
return 0;
}
/**
* @return true iff we have found at least 3 finder patterns that have been detected
* at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the
* candidates is "pretty similar"
*/
private boolean haveMultiplyConfirmedCenters() {
int confirmedCount = 0;
float totalModuleSize = 0.0f;
int max = possibleCenters.size();
for (int i = 0; i < max; i++) {
FinderPattern pattern = (FinderPattern) possibleCenters.elementAt(i);
if (pattern.getCount() >= CENTER_QUORUM) {
confirmedCount++;
totalModuleSize += pattern.getEstimatedModuleSize();
}
}
if (confirmedCount < 3) {
return false;
}
// OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive"
// and that we need to keep looking. We detect this by asking if the estimated module sizes
// vary too much. We arbitrarily say that when the total deviation from average exceeds
// 5% of the total module size estimates, it's too much.
float average = totalModuleSize / (float) max;
float totalDeviation = 0.0f;
for (int i = 0; i < max; i++) {
FinderPattern pattern = (FinderPattern) possibleCenters.elementAt(i);
totalDeviation += Math.abs(pattern.getEstimatedModuleSize() - average);
}
return totalDeviation <= 0.05f * totalModuleSize;
}
/**
* @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
* those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
* size differs from the average among those patterns the least
* @throws NotFoundException if 3 such finder patterns do not exist
*/
private FinderPattern[] selectBestPatterns() throws NotFoundException {
int startSize = possibleCenters.size();
if (startSize < 3) {
// Couldn't find enough finder patterns
throw NotFoundException.getNotFoundInstance();
}
// Filter outlier possibilities whose module size is too different
if (startSize > 3) {
// But we can only afford to do so if we have at least 4 possibilities to choose from
float totalModuleSize = 0.0f;
float square = 0.0f;
for (int i = 0; i < startSize; i++) {
float size = ((FinderPattern) possibleCenters.elementAt(i)).getEstimatedModuleSize();
totalModuleSize += size;
square += size * size;
}
float average = totalModuleSize / (float) startSize;
float stdDev = (float) Math.sqrt(square / startSize - average * average);
Collections.insertionSort(possibleCenters, new FurthestFromAverageComparator(average));
float limit = Math.max(0.2f * average, stdDev);
for (int i = 0; i < possibleCenters.size() && possibleCenters.size() > 3; i++) {
FinderPattern pattern = (FinderPattern) possibleCenters.elementAt(i);
if (Math.abs(pattern.getEstimatedModuleSize() - average) > limit) {
possibleCenters.removeElementAt(i);
i--;
}
}
}
if (possibleCenters.size() > 3) {
// Throw away all but those first size candidate points we found.
float totalModuleSize = 0.0f;
for (int i = 0; i < possibleCenters.size(); i++) {
totalModuleSize += ((FinderPattern) possibleCenters.elementAt(i)).getEstimatedModuleSize();
}
float average = totalModuleSize / (float) possibleCenters.size();
Collections.insertionSort(possibleCenters, new CenterComparator(average));
possibleCenters.setSize(3);
}
return new FinderPattern[]{
(FinderPattern) possibleCenters.elementAt(0),
(FinderPattern) possibleCenters.elementAt(1),
(FinderPattern) possibleCenters.elementAt(2)
};
}
/**
* <p>Orders by furthest from average</p>
*/
private static class FurthestFromAverageComparator implements Comparator {
private final float average;
private FurthestFromAverageComparator(float f) {
average = f;
}
public int compare(Object center1, Object center2) {
float dA = Math.abs(((FinderPattern) center2).getEstimatedModuleSize() - average);
float dB = Math.abs(((FinderPattern) center1).getEstimatedModuleSize() - average);
return dA < dB ? -1 : dA == dB ? 0 : 1;
}
}
/**
* <p>Orders by {@link FinderPattern#getCount()}, descending.</p>
*/
private static class CenterComparator implements Comparator {
private final float average;
private CenterComparator(float f) {
average = f;
}
public int compare(Object center1, Object center2) {
if (((FinderPattern) center2).getCount() == ((FinderPattern) center1).getCount()) {
float dA = Math.abs(((FinderPattern) center2).getEstimatedModuleSize() - average);
float dB = Math.abs(((FinderPattern) center1).getEstimatedModuleSize() - average);
return dA < dB ? 1 : dA == dB ? 0 : -1;
} else {
return ((FinderPattern) center2).getCount() - ((FinderPattern) center1).getCount();
}
}
}
}

View File

@@ -0,0 +1,49 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.detector;
/**
* <p>Encapsulates information about finder patterns in an image, including the location of
* the three finder patterns, and their estimated module size.</p>
*
* @author Sean Owen
*/
public final class FinderPatternInfo {
private final FinderPattern bottomLeft;
private final FinderPattern topLeft;
private final FinderPattern topRight;
public FinderPatternInfo(FinderPattern[] patternCenters) {
this.bottomLeft = patternCenters[0];
this.topLeft = patternCenters[1];
this.topRight = patternCenters[2];
}
public FinderPattern getBottomLeft() {
return bottomLeft;
}
public FinderPattern getTopLeft() {
return topLeft;
}
public FinderPattern getTopRight() {
return topRight;
}
}

View File

@@ -0,0 +1,37 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
final class BlockPair {
private final byte[] dataBytes;
private final byte[] errorCorrectionBytes;
BlockPair(byte[] data, byte[] errorCorrection) {
dataBytes = data;
errorCorrectionBytes = errorCorrection;
}
public byte[] getDataBytes() {
return dataBytes;
}
public byte[] getErrorCorrectionBytes() {
return errorCorrectionBytes;
}
}

View File

@@ -0,0 +1,97 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
/**
* A class which wraps a 2D array of bytes. The default usage is signed. If you want to use it as a
* unsigned container, it's up to you to do byteValue & 0xff at each location.
*
* JAVAPORT: The original code was a 2D array of ints, but since it only ever gets assigned
* -1, 0, and 1, I'm going to use less memory and go with bytes.
*
* @author dswitkin@google.com (Daniel Switkin)
*/
public final class ByteMatrix {
private final byte[][] bytes;
private final int width;
private final int height;
public ByteMatrix(int width, int height) {
bytes = new byte[height][width];
this.width = width;
this.height = height;
}
public int getHeight() {
return height;
}
public int getWidth() {
return width;
}
public byte get(int x, int y) {
return bytes[y][x];
}
public byte[][] getArray() {
return bytes;
}
public void set(int x, int y, byte value) {
bytes[y][x] = value;
}
public void set(int x, int y, int value) {
bytes[y][x] = (byte) value;
}
public void set(int x, int y, boolean value) {
bytes[y][x] = (byte) (value ? 1 : 0);
}
public void clear(byte value) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
bytes[y][x] = value;
}
}
}
public String toString() {
StringBuffer result = new StringBuffer(2 * width * height + 2);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
switch (bytes[y][x]) {
case 0:
result.append(" 0");
break;
case 1:
result.append(" 1");
break;
default:
result.append(" ");
break;
}
}
result.append('\n');
}
return result.toString();
}
}

View File

@@ -0,0 +1,557 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
import com.google.zxing.EncodeHintType;
import com.google.zxing.WriterException;
import com.google.zxing.common.BitArray;
import com.google.zxing.common.CharacterSetECI;
import com.google.zxing.common.ECI;
import com.google.zxing.common.reedsolomon.GenericGF;
import com.google.zxing.common.reedsolomon.ReedSolomonEncoder;
import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
import com.google.zxing.qrcode.decoder.Mode;
import com.google.zxing.qrcode.decoder.Version;
import java.io.UnsupportedEncodingException;
import java.util.Hashtable;
import java.util.Vector;
/**
* @author satorux@google.com (Satoru Takabayashi) - creator
* @author dswitkin@google.com (Daniel Switkin) - ported from C++
*/
public final class Encoder {
// The original table is defined in the table 5 of JISX0510:2004 (p.19).
private static final int[] ALPHANUMERIC_TABLE = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x00-0x0f
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x10-0x1f
36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, // 0x20-0x2f
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, // 0x30-0x3f
-1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, // 0x40-0x4f
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, // 0x50-0x5f
};
static final String DEFAULT_BYTE_MODE_ENCODING = "ISO-8859-1";
private Encoder() {
}
// The mask penalty calculation is complicated. See Table 21 of JISX0510:2004 (p.45) for details.
// Basically it applies four rules and summate all penalties.
private static int calculateMaskPenalty(ByteMatrix matrix) {
int penalty = 0;
penalty += MaskUtil.applyMaskPenaltyRule1(matrix);
penalty += MaskUtil.applyMaskPenaltyRule2(matrix);
penalty += MaskUtil.applyMaskPenaltyRule3(matrix);
penalty += MaskUtil.applyMaskPenaltyRule4(matrix);
return penalty;
}
/**
* Encode "bytes" with the error correction level "ecLevel". The encoding mode will be chosen
* internally by chooseMode(). On success, store the result in "qrCode".
*
* We recommend you to use QRCode.EC_LEVEL_L (the lowest level) for
* "getECLevel" since our primary use is to show QR code on desktop screens. We don't need very
* strong error correction for this purpose.
*
* Note that there is no way to encode bytes in MODE_KANJI. We might want to add EncodeWithMode()
* with which clients can specify the encoding mode. For now, we don't need the functionality.
*/
public static void encode(String content, ErrorCorrectionLevel ecLevel, QRCode qrCode)
throws WriterException {
encode(content, ecLevel, null, qrCode);
}
public static void encode(String content, ErrorCorrectionLevel ecLevel, Hashtable hints,
QRCode qrCode) throws WriterException {
String encoding = hints == null ? null : (String) hints.get(EncodeHintType.CHARACTER_SET);
if (encoding == null) {
encoding = DEFAULT_BYTE_MODE_ENCODING;
}
// Step 1: Choose the mode (encoding).
Mode mode = chooseMode(content, encoding);
// Step 2: Append "bytes" into "dataBits" in appropriate encoding.
BitArray dataBits = new BitArray();
appendBytes(content, mode, dataBits, encoding);
// Step 3: Initialize QR code that can contain "dataBits".
int numInputBytes = dataBits.getSizeInBytes();
initQRCode(numInputBytes, ecLevel, mode, qrCode);
// Step 4: Build another bit vector that contains header and data.
BitArray headerAndDataBits = new BitArray();
// Step 4.5: Append ECI message if applicable
if (mode == Mode.BYTE && !DEFAULT_BYTE_MODE_ENCODING.equals(encoding)) {
CharacterSetECI eci = CharacterSetECI.getCharacterSetECIByName(encoding);
if (eci != null) {
appendECI(eci, headerAndDataBits);
}
}
appendModeInfo(mode, headerAndDataBits);
int numLetters = mode.equals(Mode.BYTE) ? dataBits.getSizeInBytes() : content.length();
appendLengthInfo(numLetters, qrCode.getVersion(), mode, headerAndDataBits);
headerAndDataBits.appendBitArray(dataBits);
// Step 5: Terminate the bits properly.
terminateBits(qrCode.getNumDataBytes(), headerAndDataBits);
// Step 6: Interleave data bits with error correction code.
BitArray finalBits = new BitArray();
interleaveWithECBytes(headerAndDataBits, qrCode.getNumTotalBytes(), qrCode.getNumDataBytes(),
qrCode.getNumRSBlocks(), finalBits);
// Step 7: Choose the mask pattern and set to "qrCode".
ByteMatrix matrix = new ByteMatrix(qrCode.getMatrixWidth(), qrCode.getMatrixWidth());
qrCode.setMaskPattern(chooseMaskPattern(finalBits, qrCode.getECLevel(), qrCode.getVersion(),
matrix));
// Step 8. Build the matrix and set it to "qrCode".
MatrixUtil.buildMatrix(finalBits, qrCode.getECLevel(), qrCode.getVersion(),
qrCode.getMaskPattern(), matrix);
qrCode.setMatrix(matrix);
// Step 9. Make sure we have a valid QR Code.
if (!qrCode.isValid()) {
throw new WriterException("Invalid QR code: " + qrCode.toString());
}
}
/**
* @return the code point of the table used in alphanumeric mode or
* -1 if there is no corresponding code in the table.
*/
static int getAlphanumericCode(int code) {
if (code < ALPHANUMERIC_TABLE.length) {
return ALPHANUMERIC_TABLE[code];
}
return -1;
}
public static Mode chooseMode(String content) {
return chooseMode(content, null);
}
/**
* Choose the best mode by examining the content. Note that 'encoding' is used as a hint;
* if it is Shift_JIS, and the input is only double-byte Kanji, then we return {@link Mode#KANJI}.
*/
public static Mode chooseMode(String content, String encoding) {
if ("Shift_JIS".equals(encoding)) {
// Choose Kanji mode if all input are double-byte characters
return isOnlyDoubleByteKanji(content) ? Mode.KANJI : Mode.BYTE;
}
boolean hasNumeric = false;
boolean hasAlphanumeric = false;
for (int i = 0; i < content.length(); ++i) {
char c = content.charAt(i);
if (c >= '0' && c <= '9') {
hasNumeric = true;
} else if (getAlphanumericCode(c) != -1) {
hasAlphanumeric = true;
} else {
return Mode.BYTE;
}
}
if (hasAlphanumeric) {
return Mode.ALPHANUMERIC;
} else if (hasNumeric) {
return Mode.NUMERIC;
}
return Mode.BYTE;
}
private static boolean isOnlyDoubleByteKanji(String content) {
byte[] bytes;
try {
bytes = content.getBytes("Shift_JIS");
} catch (UnsupportedEncodingException uee) {
return false;
}
int length = bytes.length;
if (length % 2 != 0) {
return false;
}
for (int i = 0; i < length; i += 2) {
int byte1 = bytes[i] & 0xFF;
if ((byte1 < 0x81 || byte1 > 0x9F) && (byte1 < 0xE0 || byte1 > 0xEB)) {
return false;
}
}
return true;
}
private static int chooseMaskPattern(BitArray bits, ErrorCorrectionLevel ecLevel, int version,
ByteMatrix matrix) throws WriterException {
int minPenalty = Integer.MAX_VALUE; // Lower penalty is better.
int bestMaskPattern = -1;
// We try all mask patterns to choose the best one.
for (int maskPattern = 0; maskPattern < QRCode.NUM_MASK_PATTERNS; maskPattern++) {
MatrixUtil.buildMatrix(bits, ecLevel, version, maskPattern, matrix);
int penalty = calculateMaskPenalty(matrix);
if (penalty < minPenalty) {
minPenalty = penalty;
bestMaskPattern = maskPattern;
}
}
return bestMaskPattern;
}
/**
* Initialize "qrCode" according to "numInputBytes", "ecLevel", and "mode". On success,
* modify "qrCode".
*/
private static void initQRCode(int numInputBytes, ErrorCorrectionLevel ecLevel, Mode mode,
QRCode qrCode) throws WriterException {
qrCode.setECLevel(ecLevel);
qrCode.setMode(mode);
// In the following comments, we use numbers of Version 7-H.
for (int versionNum = 1; versionNum <= 40; versionNum++) {
Version version = Version.getVersionForNumber(versionNum);
// numBytes = 196
int numBytes = version.getTotalCodewords();
// getNumECBytes = 130
Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
int numEcBytes = ecBlocks.getTotalECCodewords();
// getNumRSBlocks = 5
int numRSBlocks = ecBlocks.getNumBlocks();
// getNumDataBytes = 196 - 130 = 66
int numDataBytes = numBytes - numEcBytes;
// We want to choose the smallest version which can contain data of "numInputBytes" + some
// extra bits for the header (mode info and length info). The header can be three bytes
// (precisely 4 + 16 bits) at most. Hence we do +3 here.
if (numDataBytes >= numInputBytes + 3) {
// Yay, we found the proper rs block info!
qrCode.setVersion(versionNum);
qrCode.setNumTotalBytes(numBytes);
qrCode.setNumDataBytes(numDataBytes);
qrCode.setNumRSBlocks(numRSBlocks);
// getNumECBytes = 196 - 66 = 130
qrCode.setNumECBytes(numEcBytes);
// matrix width = 21 + 6 * 4 = 45
qrCode.setMatrixWidth(version.getDimensionForVersion());
return;
}
}
throw new WriterException("Cannot find proper rs block info (input data too big?)");
}
/**
* Terminate bits as described in 8.4.8 and 8.4.9 of JISX0510:2004 (p.24).
*/
static void terminateBits(int numDataBytes, BitArray bits) throws WriterException {
int capacity = numDataBytes << 3;
if (bits.getSize() > capacity) {
throw new WriterException("data bits cannot fit in the QR Code" + bits.getSize() + " > " +
capacity);
}
for (int i = 0; i < 4 && bits.getSize() < capacity; ++i) {
bits.appendBit(false);
}
// Append termination bits. See 8.4.8 of JISX0510:2004 (p.24) for details.
// If the last byte isn't 8-bit aligned, we'll add padding bits.
int numBitsInLastByte = bits.getSize() & 0x07;
if (numBitsInLastByte > 0) {
for (int i = numBitsInLastByte; i < 8; i++) {
bits.appendBit(false);
}
}
// If we have more space, we'll fill the space with padding patterns defined in 8.4.9 (p.24).
int numPaddingBytes = numDataBytes - bits.getSizeInBytes();
for (int i = 0; i < numPaddingBytes; ++i) {
bits.appendBits((i & 0x01) == 0 ? 0xEC : 0x11, 8);
}
if (bits.getSize() != capacity) {
throw new WriterException("Bits size does not equal capacity");
}
}
/**
* Get number of data bytes and number of error correction bytes for block id "blockID". Store
* the result in "numDataBytesInBlock", and "numECBytesInBlock". See table 12 in 8.5.1 of
* JISX0510:2004 (p.30)
*/
static void getNumDataBytesAndNumECBytesForBlockID(int numTotalBytes, int numDataBytes,
int numRSBlocks, int blockID, int[] numDataBytesInBlock,
int[] numECBytesInBlock) throws WriterException {
if (blockID >= numRSBlocks) {
throw new WriterException("Block ID too large");
}
// numRsBlocksInGroup2 = 196 % 5 = 1
int numRsBlocksInGroup2 = numTotalBytes % numRSBlocks;
// numRsBlocksInGroup1 = 5 - 1 = 4
int numRsBlocksInGroup1 = numRSBlocks - numRsBlocksInGroup2;
// numTotalBytesInGroup1 = 196 / 5 = 39
int numTotalBytesInGroup1 = numTotalBytes / numRSBlocks;
// numTotalBytesInGroup2 = 39 + 1 = 40
int numTotalBytesInGroup2 = numTotalBytesInGroup1 + 1;
// numDataBytesInGroup1 = 66 / 5 = 13
int numDataBytesInGroup1 = numDataBytes / numRSBlocks;
// numDataBytesInGroup2 = 13 + 1 = 14
int numDataBytesInGroup2 = numDataBytesInGroup1 + 1;
// numEcBytesInGroup1 = 39 - 13 = 26
int numEcBytesInGroup1 = numTotalBytesInGroup1 - numDataBytesInGroup1;
// numEcBytesInGroup2 = 40 - 14 = 26
int numEcBytesInGroup2 = numTotalBytesInGroup2 - numDataBytesInGroup2;
// Sanity checks.
// 26 = 26
if (numEcBytesInGroup1 != numEcBytesInGroup2) {
throw new WriterException("EC bytes mismatch");
}
// 5 = 4 + 1.
if (numRSBlocks != numRsBlocksInGroup1 + numRsBlocksInGroup2) {
throw new WriterException("RS blocks mismatch");
}
// 196 = (13 + 26) * 4 + (14 + 26) * 1
if (numTotalBytes !=
((numDataBytesInGroup1 + numEcBytesInGroup1) *
numRsBlocksInGroup1) +
((numDataBytesInGroup2 + numEcBytesInGroup2) *
numRsBlocksInGroup2)) {
throw new WriterException("Total bytes mismatch");
}
if (blockID < numRsBlocksInGroup1) {
numDataBytesInBlock[0] = numDataBytesInGroup1;
numECBytesInBlock[0] = numEcBytesInGroup1;
} else {
numDataBytesInBlock[0] = numDataBytesInGroup2;
numECBytesInBlock[0] = numEcBytesInGroup2;
}
}
/**
* Interleave "bits" with corresponding error correction bytes. On success, store the result in
* "result". The interleave rule is complicated. See 8.6 of JISX0510:2004 (p.37) for details.
*/
static void interleaveWithECBytes(BitArray bits, int numTotalBytes,
int numDataBytes, int numRSBlocks, BitArray result) throws WriterException {
// "bits" must have "getNumDataBytes" bytes of data.
if (bits.getSizeInBytes() != numDataBytes) {
throw new WriterException("Number of bits and data bytes does not match");
}
// Step 1. Divide data bytes into blocks and generate error correction bytes for them. We'll
// store the divided data bytes blocks and error correction bytes blocks into "blocks".
int dataBytesOffset = 0;
int maxNumDataBytes = 0;
int maxNumEcBytes = 0;
// Since, we know the number of reedsolmon blocks, we can initialize the vector with the number.
Vector blocks = new Vector(numRSBlocks);
for (int i = 0; i < numRSBlocks; ++i) {
int[] numDataBytesInBlock = new int[1];
int[] numEcBytesInBlock = new int[1];
getNumDataBytesAndNumECBytesForBlockID(
numTotalBytes, numDataBytes, numRSBlocks, i,
numDataBytesInBlock, numEcBytesInBlock);
int size = numDataBytesInBlock[0];
byte[] dataBytes = new byte[size];
bits.toBytes(8*dataBytesOffset, dataBytes, 0, size);
byte[] ecBytes = generateECBytes(dataBytes, numEcBytesInBlock[0]);
blocks.addElement(new BlockPair(dataBytes, ecBytes));
maxNumDataBytes = Math.max(maxNumDataBytes, size);
maxNumEcBytes = Math.max(maxNumEcBytes, ecBytes.length);
dataBytesOffset += numDataBytesInBlock[0];
}
if (numDataBytes != dataBytesOffset) {
throw new WriterException("Data bytes does not match offset");
}
// First, place data blocks.
for (int i = 0; i < maxNumDataBytes; ++i) {
for (int j = 0; j < blocks.size(); ++j) {
byte[] dataBytes = ((BlockPair) blocks.elementAt(j)).getDataBytes();
if (i < dataBytes.length) {
result.appendBits(dataBytes[i], 8);
}
}
}
// Then, place error correction blocks.
for (int i = 0; i < maxNumEcBytes; ++i) {
for (int j = 0; j < blocks.size(); ++j) {
byte[] ecBytes = ((BlockPair) blocks.elementAt(j)).getErrorCorrectionBytes();
if (i < ecBytes.length) {
result.appendBits(ecBytes[i], 8);
}
}
}
if (numTotalBytes != result.getSizeInBytes()) { // Should be same.
throw new WriterException("Interleaving error: " + numTotalBytes + " and " +
result.getSizeInBytes() + " differ.");
}
}
static byte[] generateECBytes(byte[] dataBytes, int numEcBytesInBlock) {
int numDataBytes = dataBytes.length;
int[] toEncode = new int[numDataBytes + numEcBytesInBlock];
for (int i = 0; i < numDataBytes; i++) {
toEncode[i] = dataBytes[i] & 0xFF;
}
new ReedSolomonEncoder(GenericGF.QR_CODE_FIELD_256).encode(toEncode, numEcBytesInBlock);
byte[] ecBytes = new byte[numEcBytesInBlock];
for (int i = 0; i < numEcBytesInBlock; i++) {
ecBytes[i] = (byte) toEncode[numDataBytes + i];
}
return ecBytes;
}
/**
* Append mode info. On success, store the result in "bits".
*/
static void appendModeInfo(Mode mode, BitArray bits) {
bits.appendBits(mode.getBits(), 4);
}
/**
* Append length info. On success, store the result in "bits".
*/
static void appendLengthInfo(int numLetters, int version, Mode mode, BitArray bits)
throws WriterException {
int numBits = mode.getCharacterCountBits(Version.getVersionForNumber(version));
if (numLetters > ((1 << numBits) - 1)) {
throw new WriterException(numLetters + "is bigger than" + ((1 << numBits) - 1));
}
bits.appendBits(numLetters, numBits);
}
/**
* Append "bytes" in "mode" mode (encoding) into "bits". On success, store the result in "bits".
*/
static void appendBytes(String content, Mode mode, BitArray bits, String encoding)
throws WriterException {
if (mode.equals(Mode.NUMERIC)) {
appendNumericBytes(content, bits);
} else if (mode.equals(Mode.ALPHANUMERIC)) {
appendAlphanumericBytes(content, bits);
} else if (mode.equals(Mode.BYTE)) {
append8BitBytes(content, bits, encoding);
} else if (mode.equals(Mode.KANJI)) {
appendKanjiBytes(content, bits);
} else {
throw new WriterException("Invalid mode: " + mode);
}
}
static void appendNumericBytes(String content, BitArray bits) {
int length = content.length();
int i = 0;
while (i < length) {
int num1 = content.charAt(i) - '0';
if (i + 2 < length) {
// Encode three numeric letters in ten bits.
int num2 = content.charAt(i + 1) - '0';
int num3 = content.charAt(i + 2) - '0';
bits.appendBits(num1 * 100 + num2 * 10 + num3, 10);
i += 3;
} else if (i + 1 < length) {
// Encode two numeric letters in seven bits.
int num2 = content.charAt(i + 1) - '0';
bits.appendBits(num1 * 10 + num2, 7);
i += 2;
} else {
// Encode one numeric letter in four bits.
bits.appendBits(num1, 4);
i++;
}
}
}
static void appendAlphanumericBytes(String content, BitArray bits) throws WriterException {
int length = content.length();
int i = 0;
while (i < length) {
int code1 = getAlphanumericCode(content.charAt(i));
if (code1 == -1) {
throw new WriterException();
}
if (i + 1 < length) {
int code2 = getAlphanumericCode(content.charAt(i + 1));
if (code2 == -1) {
throw new WriterException();
}
// Encode two alphanumeric letters in 11 bits.
bits.appendBits(code1 * 45 + code2, 11);
i += 2;
} else {
// Encode one alphanumeric letter in six bits.
bits.appendBits(code1, 6);
i++;
}
}
}
static void append8BitBytes(String content, BitArray bits, String encoding)
throws WriterException {
byte[] bytes;
try {
bytes = content.getBytes(encoding);
} catch (UnsupportedEncodingException uee) {
throw new WriterException(uee.toString());
}
for (int i = 0; i < bytes.length; ++i) {
bits.appendBits(bytes[i], 8);
}
}
static void appendKanjiBytes(String content, BitArray bits) throws WriterException {
byte[] bytes;
try {
bytes = content.getBytes("Shift_JIS");
} catch (UnsupportedEncodingException uee) {
throw new WriterException(uee.toString());
}
int length = bytes.length;
for (int i = 0; i < length; i += 2) {
int byte1 = bytes[i] & 0xFF;
int byte2 = bytes[i + 1] & 0xFF;
int code = (byte1 << 8) | byte2;
int subtracted = -1;
if (code >= 0x8140 && code <= 0x9ffc) {
subtracted = code - 0x8140;
} else if (code >= 0xe040 && code <= 0xebbf) {
subtracted = code - 0xc140;
}
if (subtracted == -1) {
throw new WriterException("Invalid byte sequence");
}
int encoded = ((subtracted >> 8) * 0xc0) + (subtracted & 0xff);
bits.appendBits(encoded, 13);
}
}
private static void appendECI(ECI eci, BitArray bits) {
bits.appendBits(Mode.ECI.getBits(), 4);
// This is correct for values up to 127, which is all we need now.
bits.appendBits(eci.getValue(), 8);
}
}

View File

@@ -0,0 +1,218 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
/**
* @author satorux@google.com (Satoru Takabayashi) - creator
* @author dswitkin@google.com (Daniel Switkin) - ported from C++
*/
public final class MaskUtil {
private MaskUtil() {
// do nothing
}
// Apply mask penalty rule 1 and return the penalty. Find repetitive cells with the same color and
// give penalty to them. Example: 00000 or 11111.
public static int applyMaskPenaltyRule1(ByteMatrix matrix) {
return applyMaskPenaltyRule1Internal(matrix, true) + applyMaskPenaltyRule1Internal(matrix, false);
}
// Apply mask penalty rule 2 and return the penalty. Find 2x2 blocks with the same color and give
// penalty to them.
public static int applyMaskPenaltyRule2(ByteMatrix matrix) {
int penalty = 0;
byte[][] array = matrix.getArray();
int width = matrix.getWidth();
int height = matrix.getHeight();
for (int y = 0; y < height - 1; ++y) {
for (int x = 0; x < width - 1; ++x) {
int value = array[y][x];
if (value == array[y][x + 1] && value == array[y + 1][x] && value == array[y + 1][x + 1]) {
penalty += 3;
}
}
}
return penalty;
}
// Apply mask penalty rule 3 and return the penalty. Find consecutive cells of 00001011101 or
// 10111010000, and give penalty to them. If we find patterns like 000010111010000, we give
// penalties twice (i.e. 40 * 2).
public static int applyMaskPenaltyRule3(ByteMatrix matrix) {
int penalty = 0;
byte[][] array = matrix.getArray();
int width = matrix.getWidth();
int height = matrix.getHeight();
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
// Tried to simplify following conditions but failed.
if (x + 6 < width &&
array[y][x] == 1 &&
array[y][x + 1] == 0 &&
array[y][x + 2] == 1 &&
array[y][x + 3] == 1 &&
array[y][x + 4] == 1 &&
array[y][x + 5] == 0 &&
array[y][x + 6] == 1 &&
((x + 10 < width &&
array[y][x + 7] == 0 &&
array[y][x + 8] == 0 &&
array[y][x + 9] == 0 &&
array[y][x + 10] == 0) ||
(x - 4 >= 0 &&
array[y][x - 1] == 0 &&
array[y][x - 2] == 0 &&
array[y][x - 3] == 0 &&
array[y][x - 4] == 0))) {
penalty += 40;
}
if (y + 6 < height &&
array[y][x] == 1 &&
array[y + 1][x] == 0 &&
array[y + 2][x] == 1 &&
array[y + 3][x] == 1 &&
array[y + 4][x] == 1 &&
array[y + 5][x] == 0 &&
array[y + 6][x] == 1 &&
((y + 10 < height &&
array[y + 7][x] == 0 &&
array[y + 8][x] == 0 &&
array[y + 9][x] == 0 &&
array[y + 10][x] == 0) ||
(y - 4 >= 0 &&
array[y - 1][x] == 0 &&
array[y - 2][x] == 0 &&
array[y - 3][x] == 0 &&
array[y - 4][x] == 0))) {
penalty += 40;
}
}
}
return penalty;
}
// Apply mask penalty rule 4 and return the penalty. Calculate the ratio of dark cells and give
// penalty if the ratio is far from 50%. It gives 10 penalty for 5% distance. Examples:
// - 0% => 100
// - 40% => 20
// - 45% => 10
// - 50% => 0
// - 55% => 10
// - 55% => 20
// - 100% => 100
public static int applyMaskPenaltyRule4(ByteMatrix matrix) {
int numDarkCells = 0;
byte[][] array = matrix.getArray();
int width = matrix.getWidth();
int height = matrix.getHeight();
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
if (array[y][x] == 1) {
numDarkCells += 1;
}
}
}
int numTotalCells = matrix.getHeight() * matrix.getWidth();
double darkRatio = (double) numDarkCells / numTotalCells;
return Math.abs((int) (darkRatio * 100 - 50)) / 5 * 10;
}
// Return the mask bit for "getMaskPattern" at "x" and "y". See 8.8 of JISX0510:2004 for mask
// pattern conditions.
public static boolean getDataMaskBit(int maskPattern, int x, int y) {
if (!QRCode.isValidMaskPattern(maskPattern)) {
throw new IllegalArgumentException("Invalid mask pattern");
}
int intermediate;
int temp;
switch (maskPattern) {
case 0:
intermediate = (y + x) & 0x1;
break;
case 1:
intermediate = y & 0x1;
break;
case 2:
intermediate = x % 3;
break;
case 3:
intermediate = (y + x) % 3;
break;
case 4:
intermediate = ((y >>> 1) + (x / 3)) & 0x1;
break;
case 5:
temp = y * x;
intermediate = (temp & 0x1) + (temp % 3);
break;
case 6:
temp = y * x;
intermediate = ((temp & 0x1) + (temp % 3)) & 0x1;
break;
case 7:
temp = y * x;
intermediate = ((temp % 3) + ((y + x) & 0x1)) & 0x1;
break;
default:
throw new IllegalArgumentException("Invalid mask pattern: " + maskPattern);
}
return intermediate == 0;
}
// Helper function for applyMaskPenaltyRule1. We need this for doing this calculation in both
// vertical and horizontal orders respectively.
private static int applyMaskPenaltyRule1Internal(ByteMatrix matrix, boolean isHorizontal) {
int penalty = 0;
int numSameBitCells = 0;
int prevBit = -1;
// Horizontal mode:
// for (int i = 0; i < matrix.height(); ++i) {
// for (int j = 0; j < matrix.width(); ++j) {
// int bit = matrix.get(i, j);
// Vertical mode:
// for (int i = 0; i < matrix.width(); ++i) {
// for (int j = 0; j < matrix.height(); ++j) {
// int bit = matrix.get(j, i);
int iLimit = isHorizontal ? matrix.getHeight() : matrix.getWidth();
int jLimit = isHorizontal ? matrix.getWidth() : matrix.getHeight();
byte[][] array = matrix.getArray();
for (int i = 0; i < iLimit; ++i) {
for (int j = 0; j < jLimit; ++j) {
int bit = isHorizontal ? array[i][j] : array[j][i];
if (bit == prevBit) {
numSameBitCells += 1;
// Found five repetitive cells with the same color (bit).
// We'll give penalty of 3.
if (numSameBitCells == 5) {
penalty += 3;
} else if (numSameBitCells > 5) {
// After five repetitive cells, we'll add the penalty one
// by one.
penalty += 1;
}
} else {
numSameBitCells = 1; // Include the cell itself.
prevBit = bit;
}
}
numSameBitCells = 0; // Clear at each row/column.
}
return penalty;
}
}

View File

@@ -0,0 +1,524 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
import com.google.zxing.WriterException;
import com.google.zxing.common.BitArray;
import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
/**
* @author satorux@google.com (Satoru Takabayashi) - creator
* @author dswitkin@google.com (Daniel Switkin) - ported from C++
*/
public final class MatrixUtil {
private MatrixUtil() {
// do nothing
}
private static final int[][] POSITION_DETECTION_PATTERN = {
{1, 1, 1, 1, 1, 1, 1},
{1, 0, 0, 0, 0, 0, 1},
{1, 0, 1, 1, 1, 0, 1},
{1, 0, 1, 1, 1, 0, 1},
{1, 0, 1, 1, 1, 0, 1},
{1, 0, 0, 0, 0, 0, 1},
{1, 1, 1, 1, 1, 1, 1},
};
private static final int[][] HORIZONTAL_SEPARATION_PATTERN = {
{0, 0, 0, 0, 0, 0, 0, 0},
};
private static final int[][] VERTICAL_SEPARATION_PATTERN = {
{0}, {0}, {0}, {0}, {0}, {0}, {0},
};
private static final int[][] POSITION_ADJUSTMENT_PATTERN = {
{1, 1, 1, 1, 1},
{1, 0, 0, 0, 1},
{1, 0, 1, 0, 1},
{1, 0, 0, 0, 1},
{1, 1, 1, 1, 1},
};
// From Appendix E. Table 1, JIS0510X:2004 (p 71). The table was double-checked by komatsu.
private static final int[][] POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE = {
{-1, -1, -1, -1, -1, -1, -1}, // Version 1
{ 6, 18, -1, -1, -1, -1, -1}, // Version 2
{ 6, 22, -1, -1, -1, -1, -1}, // Version 3
{ 6, 26, -1, -1, -1, -1, -1}, // Version 4
{ 6, 30, -1, -1, -1, -1, -1}, // Version 5
{ 6, 34, -1, -1, -1, -1, -1}, // Version 6
{ 6, 22, 38, -1, -1, -1, -1}, // Version 7
{ 6, 24, 42, -1, -1, -1, -1}, // Version 8
{ 6, 26, 46, -1, -1, -1, -1}, // Version 9
{ 6, 28, 50, -1, -1, -1, -1}, // Version 10
{ 6, 30, 54, -1, -1, -1, -1}, // Version 11
{ 6, 32, 58, -1, -1, -1, -1}, // Version 12
{ 6, 34, 62, -1, -1, -1, -1}, // Version 13
{ 6, 26, 46, 66, -1, -1, -1}, // Version 14
{ 6, 26, 48, 70, -1, -1, -1}, // Version 15
{ 6, 26, 50, 74, -1, -1, -1}, // Version 16
{ 6, 30, 54, 78, -1, -1, -1}, // Version 17
{ 6, 30, 56, 82, -1, -1, -1}, // Version 18
{ 6, 30, 58, 86, -1, -1, -1}, // Version 19
{ 6, 34, 62, 90, -1, -1, -1}, // Version 20
{ 6, 28, 50, 72, 94, -1, -1}, // Version 21
{ 6, 26, 50, 74, 98, -1, -1}, // Version 22
{ 6, 30, 54, 78, 102, -1, -1}, // Version 23
{ 6, 28, 54, 80, 106, -1, -1}, // Version 24
{ 6, 32, 58, 84, 110, -1, -1}, // Version 25
{ 6, 30, 58, 86, 114, -1, -1}, // Version 26
{ 6, 34, 62, 90, 118, -1, -1}, // Version 27
{ 6, 26, 50, 74, 98, 122, -1}, // Version 28
{ 6, 30, 54, 78, 102, 126, -1}, // Version 29
{ 6, 26, 52, 78, 104, 130, -1}, // Version 30
{ 6, 30, 56, 82, 108, 134, -1}, // Version 31
{ 6, 34, 60, 86, 112, 138, -1}, // Version 32
{ 6, 30, 58, 86, 114, 142, -1}, // Version 33
{ 6, 34, 62, 90, 118, 146, -1}, // Version 34
{ 6, 30, 54, 78, 102, 126, 150}, // Version 35
{ 6, 24, 50, 76, 102, 128, 154}, // Version 36
{ 6, 28, 54, 80, 106, 132, 158}, // Version 37
{ 6, 32, 58, 84, 110, 136, 162}, // Version 38
{ 6, 26, 54, 82, 110, 138, 166}, // Version 39
{ 6, 30, 58, 86, 114, 142, 170}, // Version 40
};
// Type info cells at the left top corner.
private static final int[][] TYPE_INFO_COORDINATES = {
{8, 0},
{8, 1},
{8, 2},
{8, 3},
{8, 4},
{8, 5},
{8, 7},
{8, 8},
{7, 8},
{5, 8},
{4, 8},
{3, 8},
{2, 8},
{1, 8},
{0, 8},
};
// From Appendix D in JISX0510:2004 (p. 67)
private static final int VERSION_INFO_POLY = 0x1f25; // 1 1111 0010 0101
// From Appendix C in JISX0510:2004 (p.65).
private static final int TYPE_INFO_POLY = 0x537;
private static final int TYPE_INFO_MASK_PATTERN = 0x5412;
// Set all cells to -1. -1 means that the cell is empty (not set yet).
//
// JAVAPORT: We shouldn't need to do this at all. The code should be rewritten to begin encoding
// with the ByteMatrix initialized all to zero.
public static void clearMatrix(ByteMatrix matrix) {
matrix.clear((byte) -1);
}
// Build 2D matrix of QR Code from "dataBits" with "ecLevel", "version" and "getMaskPattern". On
// success, store the result in "matrix" and return true.
public static void buildMatrix(BitArray dataBits, ErrorCorrectionLevel ecLevel, int version,
int maskPattern, ByteMatrix matrix) throws WriterException {
clearMatrix(matrix);
embedBasicPatterns(version, matrix);
// Type information appear with any version.
embedTypeInfo(ecLevel, maskPattern, matrix);
// Version info appear if version >= 7.
maybeEmbedVersionInfo(version, matrix);
// Data should be embedded at end.
embedDataBits(dataBits, maskPattern, matrix);
}
// Embed basic patterns. On success, modify the matrix and return true.
// The basic patterns are:
// - Position detection patterns
// - Timing patterns
// - Dark dot at the left bottom corner
// - Position adjustment patterns, if need be
public static void embedBasicPatterns(int version, ByteMatrix matrix) throws WriterException {
// Let's get started with embedding big squares at corners.
embedPositionDetectionPatternsAndSeparators(matrix);
// Then, embed the dark dot at the left bottom corner.
embedDarkDotAtLeftBottomCorner(matrix);
// Position adjustment patterns appear if version >= 2.
maybeEmbedPositionAdjustmentPatterns(version, matrix);
// Timing patterns should be embedded after position adj. patterns.
embedTimingPatterns(matrix);
}
// Embed type information. On success, modify the matrix.
public static void embedTypeInfo(ErrorCorrectionLevel ecLevel, int maskPattern, ByteMatrix matrix)
throws WriterException {
BitArray typeInfoBits = new BitArray();
makeTypeInfoBits(ecLevel, maskPattern, typeInfoBits);
for (int i = 0; i < typeInfoBits.getSize(); ++i) {
// Place bits in LSB to MSB order. LSB (least significant bit) is the last value in
// "typeInfoBits".
boolean bit = typeInfoBits.get(typeInfoBits.getSize() - 1 - i);
// Type info bits at the left top corner. See 8.9 of JISX0510:2004 (p.46).
int x1 = TYPE_INFO_COORDINATES[i][0];
int y1 = TYPE_INFO_COORDINATES[i][1];
matrix.set(x1, y1, bit);
if (i < 8) {
// Right top corner.
int x2 = matrix.getWidth() - i - 1;
int y2 = 8;
matrix.set(x2, y2, bit);
} else {
// Left bottom corner.
int x2 = 8;
int y2 = matrix.getHeight() - 7 + (i - 8);
matrix.set(x2, y2, bit);
}
}
}
// Embed version information if need be. On success, modify the matrix and return true.
// See 8.10 of JISX0510:2004 (p.47) for how to embed version information.
public static void maybeEmbedVersionInfo(int version, ByteMatrix matrix) throws WriterException {
if (version < 7) { // Version info is necessary if version >= 7.
return; // Don't need version info.
}
BitArray versionInfoBits = new BitArray();
makeVersionInfoBits(version, versionInfoBits);
int bitIndex = 6 * 3 - 1; // It will decrease from 17 to 0.
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 3; ++j) {
// Place bits in LSB (least significant bit) to MSB order.
boolean bit = versionInfoBits.get(bitIndex);
bitIndex--;
// Left bottom corner.
matrix.set(i, matrix.getHeight() - 11 + j, bit);
// Right bottom corner.
matrix.set(matrix.getHeight() - 11 + j, i, bit);
}
}
}
// Embed "dataBits" using "getMaskPattern". On success, modify the matrix and return true.
// For debugging purposes, it skips masking process if "getMaskPattern" is -1.
// See 8.7 of JISX0510:2004 (p.38) for how to embed data bits.
public static void embedDataBits(BitArray dataBits, int maskPattern, ByteMatrix matrix)
throws WriterException {
int bitIndex = 0;
int direction = -1;
// Start from the right bottom cell.
int x = matrix.getWidth() - 1;
int y = matrix.getHeight() - 1;
while (x > 0) {
// Skip the vertical timing pattern.
if (x == 6) {
x -= 1;
}
while (y >= 0 && y < matrix.getHeight()) {
for (int i = 0; i < 2; ++i) {
int xx = x - i;
// Skip the cell if it's not empty.
if (!isEmpty(matrix.get(xx, y))) {
continue;
}
boolean bit;
if (bitIndex < dataBits.getSize()) {
bit = dataBits.get(bitIndex);
++bitIndex;
} else {
// Padding bit. If there is no bit left, we'll fill the left cells with 0, as described
// in 8.4.9 of JISX0510:2004 (p. 24).
bit = false;
}
// Skip masking if mask_pattern is -1.
if (maskPattern != -1) {
if (MaskUtil.getDataMaskBit(maskPattern, xx, y)) {
bit = !bit;
}
}
matrix.set(xx, y, bit);
}
y += direction;
}
direction = -direction; // Reverse the direction.
y += direction;
x -= 2; // Move to the left.
}
// All bits should be consumed.
if (bitIndex != dataBits.getSize()) {
throw new WriterException("Not all bits consumed: " + bitIndex + '/' + dataBits.getSize());
}
}
// Return the position of the most significant bit set (to one) in the "value". The most
// significant bit is position 32. If there is no bit set, return 0. Examples:
// - findMSBSet(0) => 0
// - findMSBSet(1) => 1
// - findMSBSet(255) => 8
public static int findMSBSet(int value) {
int numDigits = 0;
while (value != 0) {
value >>>= 1;
++numDigits;
}
return numDigits;
}
// Calculate BCH (Bose-Chaudhuri-Hocquenghem) code for "value" using polynomial "poly". The BCH
// code is used for encoding type information and version information.
// Example: Calculation of version information of 7.
// f(x) is created from 7.
// - 7 = 000111 in 6 bits
// - f(x) = x^2 + x^1 + x^0
// g(x) is given by the standard (p. 67)
// - g(x) = x^12 + x^11 + x^10 + x^9 + x^8 + x^5 + x^2 + 1
// Multiply f(x) by x^(18 - 6)
// - f'(x) = f(x) * x^(18 - 6)
// - f'(x) = x^14 + x^13 + x^12
// Calculate the remainder of f'(x) / g(x)
// x^2
// __________________________________________________
// g(x) )x^14 + x^13 + x^12
// x^14 + x^13 + x^12 + x^11 + x^10 + x^7 + x^4 + x^2
// --------------------------------------------------
// x^11 + x^10 + x^7 + x^4 + x^2
//
// The remainder is x^11 + x^10 + x^7 + x^4 + x^2
// Encode it in binary: 110010010100
// The return value is 0xc94 (1100 1001 0100)
//
// Since all coefficients in the polynomials are 1 or 0, we can do the calculation by bit
// operations. We don't care if cofficients are positive or negative.
public static int calculateBCHCode(int value, int poly) {
// If poly is "1 1111 0010 0101" (version info poly), msbSetInPoly is 13. We'll subtract 1
// from 13 to make it 12.
int msbSetInPoly = findMSBSet(poly);
value <<= msbSetInPoly - 1;
// Do the division business using exclusive-or operations.
while (findMSBSet(value) >= msbSetInPoly) {
value ^= poly << (findMSBSet(value) - msbSetInPoly);
}
// Now the "value" is the remainder (i.e. the BCH code)
return value;
}
// Make bit vector of type information. On success, store the result in "bits" and return true.
// Encode error correction level and mask pattern. See 8.9 of
// JISX0510:2004 (p.45) for details.
public static void makeTypeInfoBits(ErrorCorrectionLevel ecLevel, int maskPattern, BitArray bits)
throws WriterException {
if (!QRCode.isValidMaskPattern(maskPattern)) {
throw new WriterException("Invalid mask pattern");
}
int typeInfo = (ecLevel.getBits() << 3) | maskPattern;
bits.appendBits(typeInfo, 5);
int bchCode = calculateBCHCode(typeInfo, TYPE_INFO_POLY);
bits.appendBits(bchCode, 10);
BitArray maskBits = new BitArray();
maskBits.appendBits(TYPE_INFO_MASK_PATTERN, 15);
bits.xor(maskBits);
if (bits.getSize() != 15) { // Just in case.
throw new WriterException("should not happen but we got: " + bits.getSize());
}
}
// Make bit vector of version information. On success, store the result in "bits" and return true.
// See 8.10 of JISX0510:2004 (p.45) for details.
public static void makeVersionInfoBits(int version, BitArray bits) throws WriterException {
bits.appendBits(version, 6);
int bchCode = calculateBCHCode(version, VERSION_INFO_POLY);
bits.appendBits(bchCode, 12);
if (bits.getSize() != 18) { // Just in case.
throw new WriterException("should not happen but we got: " + bits.getSize());
}
}
// Check if "value" is empty.
private static boolean isEmpty(int value) {
return value == -1;
}
// Check if "value" is valid.
private static boolean isValidValue(int value) {
return value == -1 || // Empty.
value == 0 || // Light (white).
value == 1; // Dark (black).
}
private static void embedTimingPatterns(ByteMatrix matrix) throws WriterException {
// -8 is for skipping position detection patterns (size 7), and two horizontal/vertical
// separation patterns (size 1). Thus, 8 = 7 + 1.
for (int i = 8; i < matrix.getWidth() - 8; ++i) {
int bit = (i + 1) % 2;
// Horizontal line.
if (!isValidValue(matrix.get(i, 6))) {
throw new WriterException();
}
if (isEmpty(matrix.get(i, 6))) {
matrix.set(i, 6, bit);
}
// Vertical line.
if (!isValidValue(matrix.get(6, i))) {
throw new WriterException();
}
if (isEmpty(matrix.get(6, i))) {
matrix.set(6, i, bit);
}
}
}
// Embed the lonely dark dot at left bottom corner. JISX0510:2004 (p.46)
private static void embedDarkDotAtLeftBottomCorner(ByteMatrix matrix) throws WriterException {
if (matrix.get(8, matrix.getHeight() - 8) == 0) {
throw new WriterException();
}
matrix.set(8, matrix.getHeight() - 8, 1);
}
private static void embedHorizontalSeparationPattern(int xStart, int yStart,
ByteMatrix matrix) throws WriterException {
// We know the width and height.
if (HORIZONTAL_SEPARATION_PATTERN[0].length != 8 || HORIZONTAL_SEPARATION_PATTERN.length != 1) {
throw new WriterException("Bad horizontal separation pattern");
}
for (int x = 0; x < 8; ++x) {
if (!isEmpty(matrix.get(xStart + x, yStart))) {
throw new WriterException();
}
matrix.set(xStart + x, yStart, HORIZONTAL_SEPARATION_PATTERN[0][x]);
}
}
private static void embedVerticalSeparationPattern(int xStart, int yStart,
ByteMatrix matrix) throws WriterException {
// We know the width and height.
if (VERTICAL_SEPARATION_PATTERN[0].length != 1 || VERTICAL_SEPARATION_PATTERN.length != 7) {
throw new WriterException("Bad vertical separation pattern");
}
for (int y = 0; y < 7; ++y) {
if (!isEmpty(matrix.get(xStart, yStart + y))) {
throw new WriterException();
}
matrix.set(xStart, yStart + y, VERTICAL_SEPARATION_PATTERN[y][0]);
}
}
// Note that we cannot unify the function with embedPositionDetectionPattern() despite they are
// almost identical, since we cannot write a function that takes 2D arrays in different sizes in
// C/C++. We should live with the fact.
private static void embedPositionAdjustmentPattern(int xStart, int yStart,
ByteMatrix matrix) throws WriterException {
// We know the width and height.
if (POSITION_ADJUSTMENT_PATTERN[0].length != 5 || POSITION_ADJUSTMENT_PATTERN.length != 5) {
throw new WriterException("Bad position adjustment");
}
for (int y = 0; y < 5; ++y) {
for (int x = 0; x < 5; ++x) {
if (!isEmpty(matrix.get(xStart + x, yStart + y))) {
throw new WriterException();
}
matrix.set(xStart + x, yStart + y, POSITION_ADJUSTMENT_PATTERN[y][x]);
}
}
}
private static void embedPositionDetectionPattern(int xStart, int yStart,
ByteMatrix matrix) throws WriterException {
// We know the width and height.
if (POSITION_DETECTION_PATTERN[0].length != 7 || POSITION_DETECTION_PATTERN.length != 7) {
throw new WriterException("Bad position detection pattern");
}
for (int y = 0; y < 7; ++y) {
for (int x = 0; x < 7; ++x) {
if (!isEmpty(matrix.get(xStart + x, yStart + y))) {
throw new WriterException();
}
matrix.set(xStart + x, yStart + y, POSITION_DETECTION_PATTERN[y][x]);
}
}
}
// Embed position detection patterns and surrounding vertical/horizontal separators.
private static void embedPositionDetectionPatternsAndSeparators(ByteMatrix matrix) throws WriterException {
// Embed three big squares at corners.
int pdpWidth = POSITION_DETECTION_PATTERN[0].length;
// Left top corner.
embedPositionDetectionPattern(0, 0, matrix);
// Right top corner.
embedPositionDetectionPattern(matrix.getWidth() - pdpWidth, 0, matrix);
// Left bottom corner.
embedPositionDetectionPattern(0, matrix.getWidth() - pdpWidth, matrix);
// Embed horizontal separation patterns around the squares.
int hspWidth = HORIZONTAL_SEPARATION_PATTERN[0].length;
// Left top corner.
embedHorizontalSeparationPattern(0, hspWidth - 1, matrix);
// Right top corner.
embedHorizontalSeparationPattern(matrix.getWidth() - hspWidth,
hspWidth - 1, matrix);
// Left bottom corner.
embedHorizontalSeparationPattern(0, matrix.getWidth() - hspWidth, matrix);
// Embed vertical separation patterns around the squares.
int vspSize = VERTICAL_SEPARATION_PATTERN.length;
// Left top corner.
embedVerticalSeparationPattern(vspSize, 0, matrix);
// Right top corner.
embedVerticalSeparationPattern(matrix.getHeight() - vspSize - 1, 0, matrix);
// Left bottom corner.
embedVerticalSeparationPattern(vspSize, matrix.getHeight() - vspSize,
matrix);
}
// Embed position adjustment patterns if need be.
private static void maybeEmbedPositionAdjustmentPatterns(int version, ByteMatrix matrix)
throws WriterException {
if (version < 2) { // The patterns appear if version >= 2
return;
}
int index = version - 1;
int[] coordinates = POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[index];
int numCoordinates = POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[index].length;
for (int i = 0; i < numCoordinates; ++i) {
for (int j = 0; j < numCoordinates; ++j) {
int y = coordinates[i];
int x = coordinates[j];
if (x == -1 || y == -1) {
continue;
}
// If the cell is unset, we embed the position adjustment pattern here.
if (isEmpty(matrix.get(x, y))) {
// -2 is necessary since the x/y coordinates point to the center of the pattern, not the
// left top corner.
embedPositionAdjustmentPattern(x - 2, y - 2, matrix);
}
}
}
}
}

View File

@@ -0,0 +1,239 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
import com.google.zxing.qrcode.decoder.Mode;
/**
* @author satorux@google.com (Satoru Takabayashi) - creator
* @author dswitkin@google.com (Daniel Switkin) - ported from C++
*/
public final class QRCode {
public static final int NUM_MASK_PATTERNS = 8;
private Mode mode;
private ErrorCorrectionLevel ecLevel;
private int version;
private int matrixWidth;
private int maskPattern;
private int numTotalBytes;
private int numDataBytes;
private int numECBytes;
private int numRSBlocks;
private ByteMatrix matrix;
public QRCode() {
mode = null;
ecLevel = null;
version = -1;
matrixWidth = -1;
maskPattern = -1;
numTotalBytes = -1;
numDataBytes = -1;
numECBytes = -1;
numRSBlocks = -1;
matrix = null;
}
// Mode of the QR Code.
public Mode getMode() {
return mode;
}
// Error correction level of the QR Code.
public ErrorCorrectionLevel getECLevel() {
return ecLevel;
}
// Version of the QR Code. The bigger size, the bigger version.
public int getVersion() {
return version;
}
// ByteMatrix width of the QR Code.
public int getMatrixWidth() {
return matrixWidth;
}
// Mask pattern of the QR Code.
public int getMaskPattern() {
return maskPattern;
}
// Number of total bytes in the QR Code.
public int getNumTotalBytes() {
return numTotalBytes;
}
// Number of data bytes in the QR Code.
public int getNumDataBytes() {
return numDataBytes;
}
// Number of error correction bytes in the QR Code.
public int getNumECBytes() {
return numECBytes;
}
// Number of Reedsolomon blocks in the QR Code.
public int getNumRSBlocks() {
return numRSBlocks;
}
// ByteMatrix data of the QR Code.
public ByteMatrix getMatrix() {
return matrix;
}
// Return the value of the module (cell) pointed by "x" and "y" in the matrix of the QR Code. They
// call cells in the matrix "modules". 1 represents a black cell, and 0 represents a white cell.
public int at(int x, int y) {
// The value must be zero or one.
int value = matrix.get(x, y);
if (!(value == 0 || value == 1)) {
// this is really like an assert... not sure what better exception to use?
throw new RuntimeException("Bad value");
}
return value;
}
// Checks all the member variables are set properly. Returns true on success. Otherwise, returns
// false.
public boolean isValid() {
return
// First check if all version are not uninitialized.
mode != null &&
ecLevel != null &&
version != -1 &&
matrixWidth != -1 &&
maskPattern != -1 &&
numTotalBytes != -1 &&
numDataBytes != -1 &&
numECBytes != -1 &&
numRSBlocks != -1 &&
// Then check them in other ways..
isValidMaskPattern(maskPattern) &&
numTotalBytes == numDataBytes + numECBytes &&
// ByteMatrix stuff.
matrix != null &&
matrixWidth == matrix.getWidth() &&
// See 7.3.1 of JISX0510:2004 (p.5).
matrix.getWidth() == matrix.getHeight(); // Must be square.
}
// Return debug String.
public String toString() {
StringBuffer result = new StringBuffer(200);
result.append("<<\n");
result.append(" mode: ");
result.append(mode);
result.append("\n ecLevel: ");
result.append(ecLevel);
result.append("\n version: ");
result.append(version);
result.append("\n matrixWidth: ");
result.append(matrixWidth);
result.append("\n maskPattern: ");
result.append(maskPattern);
result.append("\n numTotalBytes: ");
result.append(numTotalBytes);
result.append("\n numDataBytes: ");
result.append(numDataBytes);
result.append("\n numECBytes: ");
result.append(numECBytes);
result.append("\n numRSBlocks: ");
result.append(numRSBlocks);
if (matrix == null) {
result.append("\n matrix: null\n");
} else {
result.append("\n matrix:\n");
result.append(matrix.toString());
}
result.append(">>\n");
return result.toString();
}
public void setMode(Mode value) {
mode = value;
}
public void setECLevel(ErrorCorrectionLevel value) {
ecLevel = value;
}
public void setVersion(int value) {
version = value;
}
public void setMatrixWidth(int value) {
matrixWidth = value;
}
public void setMaskPattern(int value) {
maskPattern = value;
}
public void setNumTotalBytes(int value) {
numTotalBytes = value;
}
public void setNumDataBytes(int value) {
numDataBytes = value;
}
public void setNumECBytes(int value) {
numECBytes = value;
}
public void setNumRSBlocks(int value) {
numRSBlocks = value;
}
// This takes ownership of the 2D array.
public void setMatrix(ByteMatrix value) {
matrix = value;
}
// Check if "mask_pattern" is valid.
public static boolean isValidMaskPattern(int maskPattern) {
return maskPattern >= 0 && maskPattern < NUM_MASK_PATTERNS;
}
// Return true if the all values in the matrix are binary numbers.
//
// JAVAPORT: This is going to be super expensive and unnecessary, we should not call this in
// production. I'm leaving it because it may be useful for testing. It should be removed entirely
// if ByteMatrix is changed never to contain a -1.
/*
private static boolean EverythingIsBinary(final ByteMatrix matrix) {
for (int y = 0; y < matrix.height(); ++y) {
for (int x = 0; x < matrix.width(); ++x) {
int value = matrix.get(y, x);
if (!(value == 0 || value == 1)) {
// Found non zero/one value.
return false;
}
}
}
return true;
}
*/
}